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Zusammenfassung

Future wireless networks are envisioned to provide ubiquitous reliable high data-rate
communication services. Unmanned aerial vehicles (UAVs) and intelligent reflecting
surfaces (IRSs) are two promising means for meeting these requirements. To achieve
the performance gains promised by these new technologies, they have to be delicately
designed along with the other components of the wireless network. This thesis studies
advanced resource allocation design for UAV- and IRS-based communications with the
design objective of facilitating reliable power- and spectral-efficient communications
in future wireless networks. In particular, we make five specific contributions.

First, we consider a practical UAV communication application scenario where a
rotary-wing UAV acts as a flying base station (BS) to provide reliable communicati-
on services to multiple ground users in an uncertain environment with no-fly zones.
To this end, we propose two novel and robust online resource allocation algorithms
which produce a power-efficient UAV trajectory, velocity, and beamforming policy. In
particular, we exploit monotonic optimization theory to develop the optimal resource
allocation algorithm which provides a performance upper bound for the considered
system. Furthermore, we propose a successive convex approximation (SCA)-based sub-
optimal algorithm whose complexity is affordable for the real-time design of practical
UAV systems.

Second, we propose to exploit the programmability of IRSs to overcome undesired
wireless channel conditions and to mitigate the various interferences occurring in full-
duplex (FD) cognitive radio (CR) networks. We focus on an underlay CR network
and aim to maximize the throughput of the FD secondary system without causing
severe interference leakage to the incumbent users of the primary system. To this end,
we develop an FD design framework for IRS-aided CR systems where the downlink
and uplink beamforming at the secondary FD BS, the reflection matrix at the IRS
as well as the transmit power for the uplink users are jointly optimized. Exploiting
block coordinate descent theory, we construct three optimization blocks and solve the
resulting three subproblems in an alternating manner. The developed algorithm pro-
duces a high-quality solution to the considered optimization problem with guaranteed
convergence.
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Third, we focus on large IRS-assisted simultaneous wireless information and power
transfer (SWIPT) systems. Since the conventional element-wise IRS optimization
frameworks result in a heavy computational burden for practical IRS sizes, we employ
a scalable cascaded optimization framework comprising an offline and an online stage
to facilitate low-complexity IRS design. For a given transmission mode set constructed
in the offline stage, we first develop two criteria to remove less favorable transmission
modes from the set, accounting for user fairness and the specific features of SWIPT
systems, respectively. Then, we optimize the beamforming vectors and select the best
transmission mode among all remaining candidates to minimize the system trans-
mit power while satisfying the quality-of-service (QoS) requirements of the users. We
reveal a performance upper bound for the considered system by developing a branch-
and-bound-based optimal enumerating algorithm. Subsequently, to facilitate real-time
design for practical IRS systems, we leverage the penalty method to develop an effici-
ent algorithm which yields a local optimum of the considered problem in polynomial
time.

Fourth, we propose to joint apply an IRS and artificial noise (AN) to enhance the
physical layer security of a multiuser communication system and study the resulting
resource allocation design. We ensure secure communication for the considered system
by jointly optimizing the reflection pattern of the IRS and the beamforming vectors
and AN covariance matrix at the BS. We divide the original optimization problem into
two subproblems and develop a computationally-efficient suboptimal algorithm which
sequentially solves the two subproblems by employing SCA and manifold optimization
methods, respectively.

Fifth, to combat the conventional passive IRS-induced double path loss effect, ac-
tive IRSs, a novel IRS structure that can simultaneously vary the phase and the
magnitude of the reflected signal with the support of an additional power source, are
considered. To facilitate green communication, we investigate the joint design of the
IRS reflection matrix and the BS beamforming vectors for minimization of the BS
transmit power taking into account the maximum power budget of the active IRS
and the QoS requirements of the users. We propose a bilinear transformation-based
computationally-efficient algorithm which produces a locally optimal solution of the
formulated problem.
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Zusammenfassung (in German)

Zukünftige drahtlose Kommunikationsnetzwerke sollen überall zuverlässige Kommu-
nikationsdienste mit hoher Datenrate zur Verfügung stellen. „Unmanned Aerial Ve-
hicles“(UAVs) und „Intelligent Reflecting Surfaces“(IRSs) sind zwei vielversprechende
Ansätze, um dieses Ziel zu erreichen. Damit die Leistungssteigerungen, die diese neu-
en Techniken versprechen, erzielt werden können, ist die sorgfältige Optimierung der
Techniken gemeinsam mit den anderen Komponenten von drahtlosen Kommunika-
tionsnetzwerken erforderlich. Diese Dissertation untersucht neue Methoden für die
Ressourcenzuweisung in UAV- und IRS-basierten Kommunikationsnetzen mit dem
Ziel, zuverlässige power- und spektral-effiziente Kommunikation zu ermöglichen. Es
werden fünf Aspekte besonders herausgestellt.

Zuerst betrachten wir ein praktisches Anwendungsszenario, bei dem ein Drehflügel-
UAV als fliegende Basisstation (BS) fungiert. Das UAV soll zuverlässige Kommuni-
kationsdienste für mehrere Nutzer am Boden bereitstellen und dabei Flugverbots-
zonen beachten. Zu diesem Zweck schlagen wir zwei neuartige und robuste Online-
Algorithmen zur Ressourcenzuweisung vor, die energieeffiziente Richtlinien für die
Flugbahn, die Geschwindigkeit und das Beamforming des UAV generieren. Dabei nut-
zen wir die Optimierungstheorie für monotone Funktionen, um einen Algorithmus
für die optimale Ressourcenzuweisung zu entwickeln. Durch dessen Anwendung be-
stimmen wir eine obere Schranke der Leistungsfähigkeit des Kommunikationsnetzes.
Anschließend schlagen wir einen suboptimalen Algorithmus vor, der auf „successive
convex approximation“(SCA) basiert und aufgrund geringer Komplexität für UAV-
Echtzeit-Anwendungen geeignet ist.

Weiterhin nutzen wir die Programmierbarkeit von IRSs, um die Auswirkungen
von Fading und Interferenzen in „full duplex“(FD) „cognitive radio“(CR) Systemen
abzuschwächen. Wir betrachten ein CR-Kommunikationsnetz und zielen drauf ab,
den Datendurchsatz des sekundären FD-Systems zu maximieren, ohne die Leistung
des primären Systems wesentlich zu beeinträchtigung. Dazu entwickeln wir ein FD-
Design-Framework für IRS-gestützte CR-Systeme, bei dem das Uplink-und Downlink-
Beamforming der sekundären FD-BS, die Reflexionsmatrix des IRS und die Sende-
leistung der Uplink-Nutzer gemeinsam optimiert werden. Das Framework nutzt die
„block coordinate descent theory“, um drei Optimierungsblöcke für drei Unterproble-
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me zu definieren, die abwechselnd gelöst werden. Dieser Algorithmus konvergiert zu
einer qualitativ hochwertigen Lösung des ursprünglichen Problems.

Anschließend betrachten wir IRS-gestützte „simultaneous wireless information and
power transfer“(SWIPT) Systeme. Wegen der hohen Rechenkomplexität, die bei ele-
mentweiser Optimierung von typischerweise großen IRSs entsteht, verwenden wir ein
skalierbares Optimierungsframework, das aus einer Offline-Phase und einer Online-
Phase besteht. Dadurch wird ein IRS-Design mit geringer Komplexität ermöglicht.
In der Offline-Phase wird eine Menge von Übertragungsmodi definiert, die zunächst
so gefiltert wird, dass nur Modi erhalten bleiben, die Nutzer-Fairness und spezifische
SWIPT Eigenschaften garantieren. Anschließend werden die Beamforming-Vektoren
optimiert und derjenige Übertragungsmodus ausgewählt, der die Sendeleistung mini-
miert und gleichzeitig die Qualitätsanforderungen der Nutzer gewährleistet. Wir ent-
wickeln einen Branch-and-Bound-Algorithmus, mit dem eine obere Schranke der Leis-
tungsfähigkeit des Systems ermittelt wird. Schließlich nutzen wir die Penalty-Methode,
um einen effizienten Algorithmus zuentwerfen, der ein lokales Optimum für das Opti-
mierungsproblem in polynomialer-Zeit berechnet.

Außerdem fokussieren wir uns auf das Ressourcenzuweisung problem in Mehrnutzer-
Kommunikationsnetzen und schlagen die gemeinsame Verwendung von IRS und „arti-
ficial noise“(AN) vor, um die Sicherheit auf der physikalischen Schicht zu verbessern.
Mittels gemeinsamer Optimierung des Reflexionsmusters der IRS, der Beamforming-
Vektoren und der AN-Kovarianzmatrix an der BS wird sichere Kommunikation er-
reicht. Das ursprüngliche Optimierungsproblem wird in zwei Teilprobleme unterteilt
und mit einem rechen-effizienten Algorithmus gelöst, wobei SCA und Methoden der
„manifold optimization“zum Einsatz kommen.

Zuletzt widmen wir uns aktiven IRSs, einer neuartigen IRS-Struktur, die mit einer
zusätzlichen Energiequelle sowohl die Phase als auch den Betrag des reflektierten Si-
gnals ändert, um damit dem Effekt des doppelten Pfadverlusts bei konventionellen
IRSs entgegenzutreten. Gleichzeitig sollen grüne Kommunikationsnetze ermöglicht
werden, weshalb wir die Qualitätsanforderungen der Nutzer und das Leistungsbud-
get des aktiven IRS in Betracht ziehen, um die IRS-Reflexionsmatrix und die BS-
Beamforming-Vektoren für minimale Sendeleistung zu optimieren. Dafür schlagen wir
einen rechen-effizienten Algorithmus vor, der auf bilinearer Transformation basiert
und eine lokal-optimale Lösung des Problems findet.
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Kapitel 1

Introduction

Over the past decades, the wireless communication industry has witnessed signifi-
cant advances. By exploiting key technologies such as orthogonal frequency-division
multiplexing (OFDM), multiple-input multiple-output (MIMO), and turbo codes, the
fourth generation (4G) wireless communication networks achieved a data rate of 1
Gbit/s for mobile users, which has promoted many innovative mobile applications [1].
Yet, due to the tremendously increased numbers of devices and the corresponding
immense traffic demand, a more powerful and more comprehensive successor for the
4G network was needed. This has hastened the wireless communication industry to
standardize and deploy worldwide the fifth generation (5G) wireless communication
networks starting from 2020. According to the Cisco annual internet report [2], the
number of global mobile devices will grow up to 13.1 billion by 2023. As a result,
future wireless networks are expected to serve a gigantic number of conventional com-
munication users. In addition to a large number of users, future wireless networks are
also supposed to provide enhanced mobile broadband (eMBB) and ultra-reliable low
latency communications (URLLC) [3]. On the other hand, future wireless networks are
also envisaged to support various Internet-of-Things (IoT) applications with high re-
liability such as smart homes, vehicle autopiloting, and environmental monitoring [4].
For example, by setting up a wireless sensor network in a farm or a forest, the re-
quired information for implementing an irrigation system or monitoring fire disasters
can be collected. However, the traditional techniques adopted in the current wire-
less networks, including 5G, cannot meet these enhanced requirements. Furthermore,
in addition to serving various types of mobile devices, future wireless networks are
envisioned to provide real-time on-demand communication services, e.g., emergency
and disaster responses [5]. For instance, it is desired to establish temporal commu-
nication links to serve disaster-stricken civilians after the terrestrial infrastructure of
cellular systems has been destroyed by an earthquakes. However, traditional wireless
communication systems are not capable of supporting such applications.
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These new requirements have spurred both academia and industry to seek new pro-
mising techniques to enhance the performance of future wireless networks in a power-
and spectral-efficient manner. One promising solution in that regard is to migrate to
higher frequency bands which have not been exploited for communication previously,
e.g., millimeter-wave (mmWave) [6,7] and terahertz (THz) frequencies [8], to increase
the available spectrum for wireless communications. On the other hand, researchers
and system designers also explore new means to utilize the spectrum intelligently.
In particular, noticing that most of the allocated spectrum is used in an inefficient
manner, cognitive radio (CR) techniques have been proposed to reuse the licensed
frequency bands in unlicensed secondary systems as long as the performance of the
primary systems is not impaired [9]. Moreover, by deploying dual-functional radar and
communication (DFRC) base stations (BSs), integrated sensing and communication
(ISAC) facilitates the spectral coexistence of radar and wireless communication sys-
tems, which dramatically improves spectral efficiency [10–12]. Also, by integrating a
large number of antenna elements at the transceivers, massive MIMO techniques allow
us to substantially boost both spectral and power efficiency in wireless communication
systems. Benefiting from advanced self-interference (SI) cancellation techniques, full-
duplex (FD) wireless communication has become a practical option which potentially
doubles the spectral efficiency of conventional half-duplex wireless networks [13]. Besi-
des, supported by advanced successive interference cancellation (SIC) techniques, rate-
splitting multiple access (RSMA) and non-orthogonal multiple access (NOMA) [14]
have been developed to accommodate multiple users in a given time-frequency resour-
ce in a more spectral-efficient manner compared to conventional orthogonal multiple
access techniques [15].

Although the above-mentioned technologies have significant advantages, their limi-
tations should not be overlooked. Specifically, the effectiveness of the aforementioned
technologies crucially depends on the radio propagation environments. Yet, as the
wireless channel is fundamentally random and largely uncontrollable, the expected
performance gains induced by the aforementioned technologies may not be achievable
in practical wireless communication systems. For example, if the BS and the user to
be served are far from each other or the line-of-sight (LoS) link is unavailable due
to blockage, the received signal power can be too low, leading to poor performance.
Alternatively, in a radio propagation environment with few scatterers, the channel
between the BS and the user, in general, has a low rank, which degrades the diver-
sity and multiplexing gains and thus, restricts the number of supported users. To
overcome these limitations, very recently, two revolutionary techniques, namely, un-
manned aerial vehicles (UAVs) and intelligent reflecting surfaces (IRSs) have been
introduced in wireless communication research. In particular, as high-mobility flying
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drones, UAVs can be integrated into existing cellular networks to establish temporal
LoS-dominant links to provide on-demand high data rate communication services for
ground users. A detailed discussion of UAV communication is provided in Section
1.1. On the other hand, consisting of a set of passive elements that can be adjusted
individually to change the phase of an incident electromagnetic (EM) wave, IRSs can
be smartly programmed to customize favorable radio propagation environments. A
detailed discussion of IRS-assisted communication is provided in Section 1.2.

The rest of this introductory section is organized as follows. Section 1.1 introduces
some basic concepts and applications of UAV communication systems. In Section 1.2,
some fundamentals and use cases and applications of IRS-assisted communication sys-
tems are presented. Finally, in Section 1.3, we provide an overview of the contributions
of this thesis.

1.1 UAV Communication Systems
In this section, we introduce the main characteristics of UAVs and discuss the oppor-
tunities and challenges of UAV communications. Then, we review some application
scenarios of UAV communication systems.

1.1.1 Characteristics of UAVs

UAVs, also known as drones, are small aircrafts operated by ground-based controllers
or equipped with various degrees of smart algorithm-granted autonomy. In terms of
wing configuration, there are two main categories of UAVs, namely, fixed-wing and
rotary-wing UAVs. Typical fixed-wing UAVs have greater payloads, higher maximum
velocity, and longer endurance, while runways or launchers are required for takeoff and
landing [16]. In contrast, rotary-wing UAVs usually have smaller payloads and lower
flying speed and are similar to helicopters who are able to take off and land vertically
and hover at desired locations. Thanks to the development of UAV miniaturization
and modular technologies and the constantly reducing cost, interest in utilizing UAVs
in commercial and civilian applications has skyrocketed in recent years [17]. Thus,
it is not surprising that UAVs have also been proposed as a promising means to
enhance system performance and extend service coverage of wireless networks, cf. Fig.
1.1. Compared to traditional terrestrial cellular systems, UAV-assisted communication
systems provide completely new design opportunities but also face new challenges.

• High Mobility: In conventional wireless systems, the communication infra-
structure such as BSs, relays, and access points, are usually deployed at fixed
locations. In contrast, due to their flying capability, UAVs can be exploited to
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Abbildung 1.1: Illustration of UAVs supported wireless network. UAVs can be inte-
grated into satellite, marine, and cellular communication systems to
enhance system performance. Thanks to their characteristics, UAVs
are also promising enablers for smart factories, auto-pilot driving, and
real-time information collecting.

quickly establish temporal communication links [18,19]. In particular, given the
real-time locations of the ground users, the three-dimensional (3D) trajectory
of the UAV can be optimized to reduce the distance-dependent path loss, which
facilitates power-efficient communications. For instance, an individual UAV can
be assigned to one moving user to provide customized real-time tracking and
communication service. For rotary-wing UAVs, they can hover at pre-designed
positions and act as static aerial BSs to continuously serve ground users within
an area. Yet, the high mobility of the UAVs also imposes several new challenges
for UAV communications design [20]. In fact, the maximum speed of rotary-wing
UAVs is usually more than 20 m/s while fixed-wing UAVs can fly at up to 70
m/s. As a result, the velocity of the UAV has to be carefully controlled to avoid
safety issues, e.g., UAV collisions and crashes. Moreover, due to security and
confidentiality concerns, system designers may also have to take into account
geometrical constraints such as no-fly zones (NFZs) when planning the UAV
trajectory.
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• High Altitude: Different from traditional terrestrial BSs and users, UAVs can
adjust their altitude based on the application scenario. As a result, UAV commu-
nications extend the conventional two-dimensional (2D) network topology struc-
ture to a 3D structure, which facilitates 3D coverage for wireless networks [21].
For example, by deploying UAVs at appropriate height, temporal links can be
established to provide emergency communication services for users on the top
floors of high-rise buildings or in mountains [22]. Moreover, since there are usual-
ly few blocking objects around the UAVs, the probability of having LoS links
between the UAV and ground users is much higher compared to conventional
terrestrial cellular systems. In fact, the LoS-dominant air-ground links are a
mixed blessing for wireless networks. On the one hand, compared to conven-
tional terrestrial links, LoS-dominant air-ground links suffer from less channel
variation in both the time domain and the frequency domain, which facilitates
high-quality and reliable communications between the UAV and ground users.
On the other hand, this also requires more efficient interference management
to avoid severe air-ground interference to co-existing terrestrial wireless net-
works. Moreover, as flying equipments, UAVs are easier to identify and detect
compared to conventional terrestrial communication infrastructures. As a re-
sult, UAV-mounted transceivers are more vulnerable to jamming attacks and
eavesdropping, which makes security a main concern for the design of UAV
communication systems [23].

• Simple Modular Structure: As flying vehicle platforms, UAVs can conveni-
ently carry various functional modules to accomplish different kinds of tasks.
For instance, by installing cameras and image processing modules, UAVs can be
deployed as image collection nodes [16]. Moreover, powered by an onboard bat-
tery module, UAVs can be flexibly deployed in target areas regardless of whether
the power grid is available or not. Yet, this also prevents UAVs from providing
sustainable communication services in practice. First, due to the limited capa-
city of the onboard battery, UAVs have to regularly return to ground bases to
replace or recharge their batteries. Second, a large amount of power is actually
consumed by the aerodynamic module needed to keep the UAV aloft and adjust
the real-time position of the UAV. In fact, this aerodynamic power consumption
is a function of the UAV velocity and is usually on the order of hundreds or thou-
sands of watts, cf. Fig. 1.2. This is significantly larger than the communication
power consumption [24]. As a result, it is necessary to carefully design the UAV
velocity and trajectory to facilitate power-efficient UAV communications.



6 Kapitel 1 Introduction

0 2 4 6 8 10 12

UAV velocity (m/s)

100

200

300

400

U
A

V
 a

e
ro

d
y
n
a
m

ic
 p

o
w

e
r 

c
o
n
s
u
m

p
ti
o
n
 (

w
a
tt
s
)

Rotary-wing UAV

Fixed-wing UAV

Fixed-wing UAV

Rotary-wing UAV

Abbildung 1.2: The aerodynamic power consumption watts) versus flight velocity for
two types of UAVs. The aerodynamic power consumption models of
the fixed-wing and the rotary-wing and the corresponding simulation
parameters were choose based on [24] and [25], respectively.

1.1.2 Application Scenarios of UAV Communications

UAVs can be integrated into conventional terrestrial wireless networks to provide on-
demand communication services from the sky. In general, UAVs can be utilized as
static aerial communication platforms or as flying communication platforms [26]. So-
me potential application scenarios of UAV communication systems are illustrated in
Fig. 1.3. In particular, acting as relays, UAVs can establish LoS-dominant air-ground
channels and assist data transmission between terrestrial BSs and users. Moreover,
equipped with data collection modules, UAVs can fly along the optimized trajectory
and gather desired information from sensor networks in an efficient manner. Further-
more, in case a terrestrial BS is temporally malfunctioning or the cellular system
is crowded with users, UAVs can be deployed at a desired position and act as aeri-
al BSs to provide communication service in the target area. Besides, several UAVs
may cooperate with each other to further enhance system performance and extend
coverage.



1.2 IRS-Assisted Communication Systems 7

FARM

FOOD

UAV-aided relay UAV-aided data collection

UAV-mounted base station Multiple UAV collaboration

Abbildung 1.3: Illustration of some application scenarios of UAV communications.

1.2 IRS-Assisted Communication Systems
In this section, we introduce the fundamentals of IRSs and discuss the opportunities
and difficulties when integrating IRSs into conventional communication systems. Then,
we also briefly review some of the application scenarios of IRS-assisted communication
systems.

1.2.1 IRS Characteristics

Thanks to significant advancements in radio frequency (RF) micro-electro-mechanical
systems, programmable metasurfaces, i.e., IRSs, have recently attracted considerable
research attention in wireless communications [27]. Specifically, a typical IRS is a
rectangular metasurface comprising a group of sub-wavelength elements where each
element is capable of varying the phase of impinging EM waves [28]. As a result,
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Abbildung 1.4: Illustration of an IRS-assisted multiuser wireless network where the
direct links and reflecting links between the BS and user devices are
denoted by green-colored solid-line arrows and orange-colored dashed-
line arrows, respectively.

by intelligently coordinating their reflecting elements, we can favorably reconfigure
adverse radio propagation environments, which improves the performance of wireless
communication systems. An example of an IRS-assisted wireless network is depicted
in Fig. 1.4. Yet, to exploit the promising advantages of IRSs, one has to carefully
tackle the new challenges induced by IRS-assisted wireless communication systems.

• Passive Nature: A typical IRS consists of a group of reflecting elements such
as printed dipoles and phase shifters. As a result, compared to conventional
active antenna arrays, IRSs are not equipped with RF chains, and only require
a very low circuit power to maintain operation. According to [29], the circuit
power required to support one IRS element is roughly 2 mW. Hence, IRSs can
be a promising solution to facilitate power-efficient communication in future
wireless networks. Yet, due to the absence of RF chains, the channel estimati-
on approaches developed for conventional BS-supported wireless networks may
not be directly applied to acquire the channel state information (CSI) of IRS-
assisted links, i.e., the BS-IRS link and the IRS-user link. As a compromise, new
channel estimation approaches such as discrete Fourier transform (DFT)-based
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algorithms have been developed to acquire the CSI of the cascaded channel of
the BS-IRS-user link [30].

• Programmability: IRS elements can be tuned to change the properties of an
incident EM wave and reflect it in a desired direction. Hence, operating the
IRS elements with different phase-shift configurations allows us to customize
desirable wireless channels to realize various design objectives such as signal
enhancement, interference suppression, and coverage extension. In fact, to fully
unlock the potential of IRSs, the reflection configurations of all IRS elements
have to be properly designed via optimization. Yet, this introduces new design
challenges for wireless communication systems. First, to enhance the desired
signal power while mitigating interference, a large number of phase-shift co-
efficients have to be jointly optimized at the IRS, which potentially leads to a
heavy computation burden for practical IRS systems [31]. As a result, it is neces-
sary to develop scalable optimization frameworks and computationally-efficient
optimization algorithms for IRS-assisted communication systems. Second, the
operation of the IRSs makes them part of the wireless channel, and thus, the
phase-shift matrix of the IRS is intrinsically multiplied with other optimization
variables such as the active beamforming vectors or the transmit power of the
BS. To circumvent this obstacle, advanced optimization algorithms that can
effectively tackle the resulting variable coupling are needed. Third, due to the
passive nature of IRSs, perfect CSI of the IRS-assisted cascaded channels is
challenging to obtain [32]. As a result, to facilitate reliable communications, it
is necessary to take into account the impact of channel estimation errors when
designing practical IRS-assisted systems.

• Simple Structure: Usually integrated as thin planar surfaces, IRSs are adjus-
table in size and lightweight and can be conveniently installed on interior walls,
building facades, and vehicles. As a result, IRSs can be smoothly and flexibly
integrated into existing wireless communication systems [33]. Yet, to employ
IRSs in a cost-efficient and effective manner, system designers have to exploit
prior knowledge regarding the radio propagation environment when designing
an IRS deployment strategy.

• FD Mode: IRSs naturally operate in an FD manner, and benefiting from their
passivity, they do not introduce any SI and avoid circuit noise amplification. As a
result, they can be handily amalgamated into existing FD wireless communicati-
on systems [34]. However, both the location and the reflection coefficient matrix
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Abbildung 1.5: Illustration of some basic applications of IRSs in wireless communica-
tion systems.

of IRSs have to be carefully designed to mitigate the severe SI and co-channel
interference caused by the other components of FD wireless networks.

1.2.2 Application Scenarios of IRSs in Wireless Communications

Considering the above-mentioned properties, IRSs can be widely and densely deployed
in wireless communication systems to improve spectral- and power-efficiency in an
economic manner [35]. In Fig. 1.5, we show some basic applications of IRSs in wireless
communication systems. Specifically, in case the direct link between the BS and a user
suffers from severe attenuation due to blockage, an IRS can be exploited to establish
an additional reflected link, which assists in the information transmission and extends
service coverage. Moreover, by smartly adjusting the reflection coefficient matrix of
the IRS, we can amalgamate the signals in the reflected link and the direct link
in an additive or subtractive manner such that the intended signal power strength
is enhanced or interference is mitigated at the users, respectively [36]. Furthermore,
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compared to the direct link, the extra IRS-induced link usually has a higher rank
[34, 37], which can be exploited to improve the diversity gain. Besides, due to their
programmability and FD nature, IRSs are an enabler for future FD wireless networks.

1.3 Review of Contributions
In this section, we review the contributions of this thesis. In particular, we adopt
the following format for reviewing every contribution. (1) We first discuss some back-
ground for the main focus topic of the contribution. This includes some key aspects
of resource allocation design and relevant examples as well as an overview of the re-
levant works in the literature. (2) Then, we discuss and highlight different aspects of
the contribution and compare them with existing works.

1.3.1 Resource Allocation Design for UAV Communication
Systems

Compared to conventional wireless communication systems, the design of UAV-assisted
communication systems offers more degrees of freedom (DoFs) and meanwhile has to
overcome more obstacles. In particular, to achieve the desired system design target,
the position or the trajectory of the UAV has to be jointly optimized with the other
resources available in wireless networks. Moreover, different from conventional fixed
terrestrial infrastructures, one has to properly design the UAV propulsion-related pa-
rameters to provide satisfactory communication services in a power-efficient manner.
Besides, geometrical constraints should also be considered when applying UAVs in
wireless networks. In the following, we list several key aspects of resource allocation
in UAV communication systems and review some related works in the literature.

1.3.1.1 Background

UAV Position/Trajectory Design: In wireless networks, the UAV can act as a
static aerial BS or a mobile BS. As a result, depending on the application scenario,
one can either optimize the hovering position or the trajectory of the UAV. Note that
since fixed-wing UAVs are incapable of hovering, hovering position design is applicable
only for rotary-wing UAVs. As for rotary-wing UAVs, the UAV hovering position is
usually optimized to achieve specific design objectives, e.g., minimizing the UAV time
of operation or minimizing the required number of UAVs. For instance, the authors
of [38] studied the efficient deployment of UAVs to maximize the coverage of UAV-
assisted wireless networks. Alternatively, the hovering positions of the UAVs can be
jointly optimized with the power policy to facilitate power-efficient communications.
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For instance, the authors of [22] considered a UAV aerial BS and jointly optimized
its location and beamforming vectors for minimization of the total transmit power
for multiuser communication. However, when the design objective also involves the
UAV’s aerodynamic power, UAV hovering is not a power-efficient choice. This is due
to the fact that for rotary-wing UAVs, hovering is in general not the most power-
saving status, cf. Fig. 1.2. As a result, rather than hovering at the desired position,
a rotary-wing UAV would circle around that position at a speed that maximizes
the UAV service duration for a given onboard energy, cf. [39, 40]. Inspired by this
observation, the authors of [41] assumed that the UAV flies cyclically around the
desired hovering position and studied the most power-efficient UAV circling radius
and user partitioning strategy for a UAV-aided cellular system.

On the other hand, since the UAV trajectory design usually involves a continuous
time horizon, it is challenging to directly tackle such a problem. To overcome this
difficulty, a discrete path planning approach is commonly adopted in the literatu-
re [42]. Specifically, for a given UAV operation time horizon T , the UAV trajectory is
discretized into N distinct waypoints, where each waypoint corresponds to a suffici-
ently small time slot with duration T/N . Moreover, as discussed in Section 1.1.1, the
high altitude of the UAV facilitates LoS-dominant air-ground channels. In fact, the
probability of having an LoS channel depends on the flight height and the elevation
angle of the UAV. Many works in the literature assumed that the altitude of the UAV
is sufficiently high to have a purely LoS air-ground channel [39, 43, 44]. Other works
adopted a Rician fading channel model for the air-ground channel [40,45]. Depending
on which kind of air-ground channel model is adopted, there are in general two diffe-
rent UAV trajectory optimization frameworks, i.e., offline trajectory design and online
trajectory design. In particular, since for pure LoS channels, the distance-dependent
path loss is the only relevant effect, the air-ground channel gain is known in advance
for given locations of the UAV and ground users. As a result, the UAV trajectory can
be designed in an offline manner. In [43], by adopting the pure LoS air-ground channel
model, the authors jointly optimized the user scheduling, user association, UAV tra-
jectory, and transmit power offline to maximize the energy efficiency of a multi-UAV
enabled wireless communication system. On the other hand, for the Rician fading
channel model, offline UAV trajectory design is not feasible as non-causal knowledge
of the channel coefficient would be required which is usually unavailable in practice.
As a compromise, a waypoint-by-waypoint online trajectory optimization framework
is required. In particular, the online framework updates the CSI of the whole system
at each waypoint and then, optimizes the position of the next waypoint by assuming
the channel remains unchanged during duration T/N . Employing this approach, the
authors of [40] developed the jointly optimal UAV trajectory and transmit power and
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subcarrier allocation policy for maximization of the sum throughput of a UAV com-
munication system. Similarly, in [45], an online optimization algorithm that jointly
optimized the trajectory and beamforming policy of the UAV is developed to facilitate
power-efficient UAV communications.

Although UAVs enjoy 3D mobility, many existing works focused on optimizing
the 2D UAV trajectory and assumed that the UAV flies horizontally at a constant
altitude [39,43–45]. The reason behind this choice is two-fold. First, for safety concerns,
most countries have released civil UAV operational rules to strictly constrain the
altitudes of UAVs. Second, the path loss of the air-ground link is proportional to
the flight height of the UAV. Hence, the minimum altitude is preferable to reduce the
path loss. Assuming that the UAV flies at the minimum safety height, which avoids all
terrain obstacles within the service area, the authors of [46] investigated the optimal
trajectory to maximize the amount of energy transferred to a number of ground energy
harvesting (EH) receivers. Besides, by employing a fly-and-hover protocol, i.e., flexibly
switching rotary-wing UAVs between hovering mode and flying mode, the UAV can
provide timely and high-quality customized services such as UAV-assisted wireless
power transfer and UAV-enabled target sensing [47].
Aerodynamic Constraints: The mobility and maneuverability of the UAV intro-
duce additional constraints for resource allocation design in UAV-assisted communi-
cation systems. Recall that the UAV aerodynamic power consumption is in general
much larger than the communication-related power consumption. As a result, given
the limited capacity of the onboard battery, Pmax, the UAV power constraint should
include the aerodynamic power Paero and the communication-related power Pcom, i.e.,

Ptot = Paero + Pcom ≤ Pmax, (1.1)

Depending on the type of UAV, the aerodynamic power consumption model can be
different. In particular, for fixed-wing UAVs performing horizontal flight under quasi-
static equilibrium conditions, the aerodynamic power consumption model is given
by [24]

P f
aero(v) = c1v

3 + c2

v
, (1.2)

where c1 and c2 are two parameters that are related to the specific features of the
UAV. As for rotary-wing UAVs, the aerodynamic power consumption model is given
by [25]

P r
aero(v) =

√
2Wc2

3√
v2 +

√
v4 + 4c4

3

+ c4V
3

T

[
1 + c5

(
v

VT

)2]
+ c6v

3, (1.3)
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where W is a parameter whose value is determined by the thrust-to-weight ratio
of the UAV [25] and VT represents the speed of the rotor tip. Constants c3, c4, c5,
and c6 are rotary-wing UAV related parameters [25]. Compared to the aerodynamic
power model of fixed-wing UAVs in (1.2), the aerodynamic power consumption model
of rotary-wing UAVs is more complicated which leads to an additional obstacle for
the resource allocation design of rotary-wing UAV-assisted communication systems.
By employing a series of mathematical transformations, the authors of [45] obtain
the optimal UAV speed policy that maximizes the service duration of a rotary-wing
UAV. Exploiting the first-order Taylor approximation, the authors of [39] replaced
the aerodynamic power consumption model in (1.3) with a more tractable model and
showed that the approximated version of (1.3) is accurate when the value of v is large.

In addition to the aforementioned UAV power constraint, the high mobility of the
UAV also incurs kinetic constraints for UAV trajectory design. First, there are limita-
tions for the maximum and minimum UAV speeds, i.e.,

Vmin ≤ v ≤ Vmax. (1.4)

In particular, the maximum UAV speed is related to the UAV’s maximum output
power and should be strictly controlled according to civil UAV operational rules. On
the other hand, for rotary-wing UAVs, the minimum UAV speed Vmin can be zero
which corresponds to the hovering mode. For fixed-wing UAVs, the value of Vmin has
to be positive. Moreover, the UAV’s maximum acceleration is determined by its engine
performance. As a result, the UAV is not able to arbitrarily vary its speed between
two adjacent waypoints, which induces the following kinetic constraint:

∣∣∣∣v[n + 1] − v[n]
∣∣∣∣ ≤ amax

T

N
, (1.5)

where n is the time slot index and amax > 0 is the UAV’s maximum acceleration.
Taking into account the above constraints, the authors of [24] studied the joint UAV
speed and acceleration design to maximize the energy efficiency of a fixed-wing UAV-
assisted wireless communication system. Assuming that the UAV is in a quasi-static
equilibrium state, the authors of [40] investigated the jointly optimal UAV speed,
transmit power, and subcarrier allocation design that maximized the sum spectral
efficiency of a rotary-wing UAV-enabled cellular system.
Geometrical Constraints: In practice, for government buildings, military facilities,
and civil aviation airports, NFZs are commonly imposed on UAVs for safety or security
reasons. As the flight height of the UAV is usually fixed, most of the existing works
focus on 2D NFZs [45,48,49]. Depending on how the NFZs are modeled, there are in
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Abbildung 1.6: Illustration of a circle NFZ and a rectangular NFZ.

general two types of 2D NFZ-induced constraints, cf. Fig. 1.6. In particular, the NFZ
can be modeled as a circle which is given by

P =
{
p ∈ R2

∣∣∣ ∥p − q∥2 ≤ d
}

, (1.6)

where ∥·∥2 denotes the l2-norm of its argument. Vectors p ∈ R2 and q ∈ R2 denote the
UAV 2D position and the origin of the 2D NFZ, respectively. Besides, d is the radius
of the circle NFZ. On the other hand, an M -sided polygon NFZ can be represented
as the intersection of M half-spaces, which is given by

P =
{

p ∈ R2
∣∣∣ M⋂

i=1
aT

i p ≤ bi

}
, (1.7)

where (·)T denote the transpose of its argument. Moreover, each half-space is defined
by a linear inequality aT

i p ≤ bi. As a result, for any waypoint, the UAV is outside the
NFZ if its 2D position r satisfies the following constraint:

r /∈ P . (1.8)

We note that compared to polygon NFZs, circle NFZs are easier to incorporate when
designing the UAV trajectory.

In addition to the NFZ-induced constraint, it is necessary to take into account other
geometrical constraints, e.g., the initial and final positions of the UAV, to facilitate the
application of UAVs in wireless communication systems. In particular, the UAVs are
usually launched at pre-determined locations such as UAV bases and control centers.
Moreover, after completing their mission, UAVs are required to return to specific
regions for maintenance or recharging. As a result, we have

r[0] ∈ Dini, r[N ] ∈ Dfin, (1.9)



16 Kapitel 1 Introduction

where Dini ⊆ R2 and Dfin ⊆ R2 denote the required launching and takeoff region for
UAV trajectory design, respectively.

Besides, when multiple UAVs collaborate with each other, it is necessary to delineate
a safe region around each UAV to avoid UAV collision. In particular, the safe region
can be modeled as a circle whose center is the current position of the UAV with the
pre-determined safe distance being the radius, which leads to

∥∥∥r[n] − r′ [n]
∥∥∥

2
≥ Dsafe, (1.10)

where r[n] and r′ [n] denote the positions of two different UAVs in time slot n and Dsafe

is a pre-defined UAV safe distance. Taking into account this constraint, the authors
of [50] studied collision-free optimal trajectory design for a multi-UAV enabled wireless
network.

1.3.1.2 Author’s Contributions

In this part, we clarify the motivation of our work in [45] and explain the novel aspects
of the considered UAV communication system model and the developed resource al-
location schemes. Below, we summarize our main contributions:

• Uniform Linear/Planar Array UAVs: In the literature, most existing works
adopted a single-antenna UAV to serve multiple single-antenna devices orthogo-
nally in the frequency domain or in the time domain [39,40,43,44]. However, the
performance of the aforementioned air-ground communication systems can be
significantly improved if the UAV-mounted transceivers are equipped with multi-
ple antennas. To this end, we proposed to employ a uniform linear array (ULA),
cf. [22], or a more general structure, a uniform planar array (UPA), cf. [45],
at the UAV to meet the QoS requirements of multiple single-antenna ground
devices in a spectral- and power-efficient manner. Our works [22] and [45] are
the first two papers that modeled multi-antenna UAV systems and investigated
the corresponding optimal transmit beamforming vector design.

• UAV Communications in Uncertain Environments: Although the works
in [40, 44, 48, 49] have revealed significant performance gains when exploiting
UAVs in wireless communication systems, the developed resource allocation sche-
mes may not achieve the expected gains in practical UAV-assisted communica-
tion systems. In particular, the designs developed in [40,44,48,49] are based on
several idealistic assumptions, e.g., perfectly stable flight of the UAV and perfect
CSI of the whole system. First, in practice, due to the unavoidable wind gusts, it
is challenging for the UAV to maintain stability and preclude unfavorable body
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jittering during the flight. According to the measurement results in [21], the jitte-
ring angles of UAVs can be as large as 10 degrees, which cannot be neglected for
practical UAV communications. Impaired by jittering, it is challenging for the
UAV onboard sensors to precisely measure the angle-of-departure (AoD) of the
air-ground links. As a result, if left unattended, the resulting jittering-induced
AoD variance can significantly degrade the beamforming gain introduced by the
UPA at the UAV. To capture this effect, in [45], we propose a bounded AoD
uncertainty model which constrains the maximum AoD estimation error by a
deterministic value. Second, when operating a UAV in strong wind gusts, the
UAV ground speed, i.e., the horizontal speed of the UAV with respect to the
ground, is actually the sum of the horizontal wind speed and the UAV air speed.
As a result, even if the UAV’s air speed is appropriately controlled, we cannot
prevent the UAV from violating the corresponding operation constraint. Mo-
reover, when encountering high horizontal wind speeds, the UAV may deviate
from the intended trajectory, causing a collision or crashing accident. Because
of the random nature of the wind, it is challenging to estimate the precise wind
speed in each time slot. As a compromise, we make the conservative assumption
that the wind gusts always exist during the considered time horizon and adopt
a bounded wind speed uncertainty model to restrict the maximum wind speed.
Third, although global positioning system (GPS) modules are commonly instal-
led at the ground user devices, the real-time user location information may not
be perfectly known because of the limited positioning accuracy of practical GPS
modules. As a result, we also model the 2D user location uncertainty in [45]. Our
work [45] was the first paper that considered a practical UAV communication
system in an uncertain environment accounting for jittering-induced AoD uncer-
tainty, the randomness of wind speed, and user location estimation errors and,
further, developed a corresponding robust UAV trajectory design algorithm.

• Polygon NFZs: Considering the fact that NFZs are commonly imposed in
practical UAV systems, it is necessary to take into account corresponding geo-
metrical constraints for UAV trajectory design. Most existing works adopted a
circle NFZ model as it introduces a convex constraint for resource allocation
optimization [48, 49]. However, as shown in [51], practical NFZs are usually de-
lineated as polygons. As a result, in our work [45], we considered a general and
practical case where multiple polygon NFZs coexist in the region to be served.
In particular, we model each polygon NFZ in a similar way as in (1.7). With the
help of a binary indicator function, we first represented the condition that the
UAV does not violate one NFZ by a Boolean operator ’or’ function. Then, for
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Abbildung 1.7: Illustration of key steps for obtaining the globally optimal solution
and locally optimal solution of the optimization problem formulated
in [45].

multiple coexisting NFZs, we derive a disjunctive programming constraint. The
UAV does not intrude any NFZ if this disjunctive constraint is satisfied. Since
the disjunctive programming constraint imposes an obstacle for solving the for-
mulated resource allocation optimization problem, we transformed the original
problem equivalently into a mixed-integer programming problem by employing
the Big-M transformation [52]. Our work [45] is the first paper in the UAV com-
munication literature that adopted the polygon NFZ model for UAV trajectory
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design and, further, proposed a corresponding optimization technique for the
resulting challenging problem.

• Optimal Solution: In [45], we studied the joint robust UAV trajectory and
beamforming vector design to facilitate power-efficient UAV communications,
i.e., to minimize the summation of the UAV aerodynamic power and the trans-
mit power. Since the AoDs of the air-ground links vary with the UAV’s real-time
location, it is arduous to offline design the UAV 2-D horizontal track and down-
link beamforming strategy for a sequence of time slots. Hence, we exploited
monotonic optimization theory and developed an online optimization frame-
work that yielded the optimal trajectory and beamformers of the UAV in each
time slot. A detailed review of monotonic optimization will be presented in
Section 2.2.3. The proposed monotonic optimization-based algorithm enables
the performance evaluation of any suboptimal schemes but also entails a high
computational complexity that grows exponentially with the number of opti-
mization variables. To facilitate real-time online UAV design, we also developed
a successive convex approximation (SCA)-based low-complexity suboptimal al-
gorithm. The SCA approach will be introduced in detail in Section 2.2.1. To
summarize the resource allocation schemes developed in [45], in Fig. 1.7, we
provide a flow chart that contains the main steps of the proposed monotonic
optimization-based and SCA-based algorithms.

1.3.2 Resource Allocation Design for IRS-Assisted
Communications

The novel and attractive features of IRSs make them a promising enabler for future
wireless networks. The key to unleashing the full potential of IRSs is to jointly design
their phase shifts and the other components of the wireless communication system.
To this end, one has to carefully model the properties of IRSs. In the literature,
various IRS models have been proposed to account for the different properties of
IRSs, which induce different constraints for the design of IRS-assisted wireless systems.
Moreover, system designers have to carefully take into account the IRS deployment
problem to provide high-quality communication in a cost- and power-efficient manner.
Furthermore, since perfect CSI of the IRS-assisted cascaded channels is challenging
to obtain, it is necessary to take into account channel estimation errors and develop
robust resource allocation algorithms to facilitate reliable communications in practical
IRS-assisted systems. Besides, other issues such as discrete IRS phase shifts should
also be considered for practical IRS-assisted communication systems. In the following,
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we list several key aspects of resource allocation optimization design for IRS-assisted
communications and briefly review some related works in the literature.

1.3.2.1 Background

IRS Model-Induced Constraints: Depending on the adopted IRS models, system
designers have to consider different constraints when investigating IRS design. In the
following, we introduce several commonly adopted theoretical IRS models and discuss
the corresponding challenges for IRS design.

• Independent Diffusive Scatterer (IDS)-Based Model: The IDS-based IRS
model has been widely adopted in many works that investigated the resource al-
location algorithm design for IRS-assisted communication systems [53–58]. For
instance, adopting an IDS-based IRS model, the authors of [53] investigated the
joint active and passive beamforming design and revealed a significant perfor-
mance improvement with IRSs in multiuser communication systems. In particu-
lar, this model assumes that each IRS element acts as a diffusive scatterer and
is able to independently vary the incident signal by adding an additional phase
shift. Accordingly, the impact of the IRS can be modeled by a diagonal matrix,
where the entries of the main diagonal represent the reflection coefficients of
the IRS elements. Considering the passive nature of IRSs, the magnitude of
the reflection coefficient of each IRS element cannot exceed one, leading to a
unit-modulus constraint for the reflection coefficients. The corresponding unit-
modulus constraint of an IRS comprising M elements can be modeled as

Ψ = diag
(
ejθ1 , · · · , ejθm , · · · , ejθM

)
, (1.11)

where θm is the phase shift of the m-th reflecting element of the IRS. We note
that this unit-modulus constraint defines a multi-dimensional complex circle ma-
nifold which makes the resulting optimization problem intractable. In general, it
is challenging to develop a systematic approach that can solve such an optimizati-
on problem optimally. In the literature, the globally optimal solution was shown
to be accessible only for some special cases. For instance, the authors of [59]
developed an argument division-based branch-and-bound (BnB) algorithm and
revealed the performance ceiling of an IRS-enabled single-user system. The com-
putational complexity of such algorithms is prohibitively high for practical IRS
systems, which has motivated researchers to develop computationally-efficient
algorithms by sacrificing part of the performance gain. In particular, some works
proposed to first transform the original optimization problem with (1.11) into
an equivalent semidefinite programming problem with a rank-one constraint and
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then, tackle it by employing SDR, cf. [53–55]. Unfortunately, this approach can-
not ensure a rank-one solution for the equivalent optimization problem. As a
result, Gaussian randomization is further applied to produce a unit-rank solu-
tion. However, this may cause an infeasibility issue as the resulting solution is
not guaranteed to satisfy the QoS constraint. To circumvent this difficulty, some
works proposed to employ the manifold optimization approach to directly hand-
le the unit-modulus constraint problem [56]. Alternatively, the unit modulus
constraint can be replaced by an equivalent rank-constraint, and then, can be
further recast as a difference of convex functions (DC) constraint. Inspired by
this observation, some works propose to employ the SCA approach to obtain
a suboptimal solution to such a problem. For example, the authors of [60] pro-
posed to rewrite the rank-one constraint as the difference of two matrix norm
functions and convexified the resulting constraint by constructing a first-order
Taylor approximation-based surrogate function for SCA.

• Impedance-Network (INW)-Based Model: The IDS model is based on the
assumption that each IRS element can be separately controlled and there is no
connection between the IRS elements. As a result, the available DoFs of an IDS-
based IRS are determined by the number of IRS elements. Inspired by this, the
authors of [61] proposed to connect all IRS elements via an impedance network,
which introduces additional DoFs for IRS design. This novel IRS architecture,
referred to as the INW-based IRS model, allows us to simultaneously adjust the
phases and the magnitudes of incident signals. In particular, the INW model
introduces the following constraints on the IRS matrix design

Ψ = ΨT , ΨHΨ = IM , (1.12)

where (·)H denotes the conjugate transpose of its argument and IM refers to
the identity matrix of dimension M . Equation (1.12) indicates that Ψ is a com-
plex symmetric unitary matrix. Compared to the IDS-based model, although
the INW-based model introduces more DoFs that can be exploited to improve
system performance, it also has several drawbacks. First, the IDS-based model
can be regarded as a single connected reconfigurable impedance network, which
is a special case of the fully connected INW-based model. As a result, the INW-
based model requires more reconfigurable impedance components to establish
the connections between the IRS elements, which increases the deployment cost
and the complexity of the hardware implementation. Second, compared to the
IDS model-induced constraint in (1.11), the constraint in (1.12) is even more
challenging for IRS design. In particular, it is difficult to transform the complex
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symmetric unitary matrix constraint into a more tractable form. As a result,
there is only a limited number of works that adopted this model for investiga-
ting IRS system design. The work in [61] was the first paper that paved the way
for INW-based IRS design. In particular, the authors of [61] considered a special
case where an IRS-assisted system serves only one user and developed a quasi-
Newton-based algorithm that maximized the received signal power at the user.
Considering the fact that the constraint in (1.12) can be mapped to a complex
Stiefel manifold in Riemannian space, one may exploit manifold optimization
theory to develop an efficient resource allocation optimization algorithm for a
multiuser system.

• Physics-Based Model: Although the IDS- and INW-based IRS models ac-
count for the phase shift and passive nature of the IRS, they do not take into
account the physical characteristics of IRSs, such as the EM wave angle of arri-
val (AoA) and AoD and the size of the IRS elements. Thus, the IDS and INW
models cannot exploit these essential and practical properties for the design of
IRS-assisted systems effectively. This motivates the development of a physics-
based IRS model, which accurately captures the unique EM environment in
practical IRS systems, cf. [37, 62]. This physics-based IRS model is based on
the generalized radar cross-section matrix G, whose entries can be expressed as
follows

g(ϕt, ϕr). (1.13)

Here, g(ϕt, ϕr) is the response function for a plane wave impinging from a direc-
tion characterized by AoA ϕt to a reflected direction characterized by AoD ϕr for
a given reflection pattern of the IRS. In fact, for a practical radio propagation
environment, there are usually a finite number of scatterers. As a result, only
limited numbers of AoAs and AoDs can be exploited by the IRS to receive a
signal from the intended transmitter or reflect a signal to the destination. Inspi-
red by this observation, the authors of [37] proposed a two-stage optimization
framework that sequentially designs a physics-based IRS in an offline stage and
an online stage. Specifically, the IRS is partitioned into several tiles and for each
configuration of the phase shifts of a tile, the resulting impact on the wireless
channel is modeled taking into account the incident and reflection angles. As a
result, a set of different transmission modes is constructed offline, where each
transmission mode effectively corresponds to a given configuration of the phase
shifts. Then, in the online stage, the transmission mode selection policy is jointly
designed with the other wireless resources to achieve the desired design objecti-
ve [63]. In [37], the authors provided initial results for exploiting the two-stage
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optimization framework for resource allocation optimization in an IRS-assisted
multiuser communication system. Furthermore, employing the two-stage opti-
mization framework, the authors of [64] investigated the optimal phase-shift
codebook design to maximize the received power in an intended direction.

• Active IRS: Although the above IRS models have been widely adopted in the
literature to study IRS design, their passivity constitutes a bottleneck for si-
gnificant performance enhancement of conventional communication systems. In
practice, due to the double path loss effect, there is usually a significant path
loss gap between the IRS-induced reflected link and the unobstructed direct
link [37]. This issue, if left unattended, can severely degrade the performance
gain achieved by deploying passive IRSs in conventional communication sys-
tems. Considering the fact that passive IRSs enable a square-law beamforming
gain [53], one promising way to compensate for the severe large-scale fading is
to substantially increase the number of passive IRS elements. Yet, employing
such a large passive IRS in a wireless network not only results in considerable
signaling overhead for CSI acquisition but also significantly complicates IRS op-
timization. To overcome these difficulties, the authors of [65] proposed to amend
conventional passive IRSs by adding additional reflection-type amplifiers. This
novel IRS architecture, referred to as active IRSs, can simultaneously adjust the
phase and the magnitude of the reflected signals at the expense of consuming
extra power for amplification. In particular, by exploiting an external power sup-
ply, active IRSs can effectively reduce the double path loss-induced performance
degradation of passive IRSs without significantly increasing the computational
burden and signaling overhead. Active IRSs can be modeled by the product of
an amplification coefficient matrix A and a phase-shift matrix Θ. For a given
limited available power, PIRS, the amplification power of the active IRS has to
satisfy the following constraint

Ps(A, Θ) + Pn(A, Θ) ≤ PIRS. (1.14)

Here, Ps(A, Θ) denotes the amplification power for the desired signals. Mo-
reover, Pn(A, Θ) denotes the variance of the amplified dynamic noise that is
generated by the power amplification [65]. The amplification power constraint
in (1.14) involves two optimization variables A and Θ, which further aggrava-
tes the variables coupling issue for IRS design. To circumvent this difficulty, the
authors of [66] developed a block coordinate descent (BCD)-based algorithm
that maximizes the spectral efficiency of active IRS-assisted multiuser systems.
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IRS Deployment: In practice, depending on the application scenario, there are dif-
ferent IRS deployment policies. Specifically, given a total number of IRS elements,
one can either adopt a centralized deployment strategy, i.e., constructing a large IRS
at a desired location, or alternatively, one can divide the IRS elements into several
groups and deploy several small IRSs in a distributed manner in the wireless network.
For instance, the work in [60] showed that a uniform allocation with the same num-
ber of reflecting elements deployed at several small IRSs is favorable for performance
enhancement of IRS-assisted wireless networks with uniformly distributed users. The
authors of [67] investigated the deployment strategy in an IRS-assisted network com-
prising two users and unveiled that centralized deployment outperforms distributed
deployment when the rates of the two users are different. On the other hand, due
to the double path loss effect, it is usually advantageous to deploy the IRSs in close
vicinity of either the BS or the user. In particular, the authors of [53] proposed to
deploy the IRS close to a set of users to provide communication services for these users
in a power-efficient manner. In [68], the authors studied the optimal IRS deployment
design for maximization of the sum rate for different multiple access schemes. Fur-
thermore, since the IRSs reflect all incident signals, system designers have to carefully
choose the location of the IRS to avoid severe inter-cell interference or information le-
akage. For instance, the authors of [69] investigated different network geometries and
compared the corresponding secrecy rates for an IRS-assisted multiuser communicati-
on system. Besides, the IRSs should be deployed by exploiting prior knowledge of the
radio propagation environment and taking into account additional practical factors
such as deployment cost and space constraints. In Fig. 1.8, we show some typical IRS
deployment scenarios in wireless communication systems.
Robust IRS Design: As we mentioned in Section 1.2.1, the passivity of the IRS
makes it difficult to obtain the perfect CSI of the cascaded channel of the BS-IRS-user
link. To facilitate reliable communication in practical systems, the resource allocati-
on algorithms should be robust against channel estimation errors. In the literature,
CSI uncertainty is characterized by adopting either a bounded model or a statistical
model. In particular, the bounded CSI error model constructs an uncertainty regi-
on with a known bound, which contains all possible CSI errors. This introduces an
intractable semi-infinite constraint in the problem formulation. Such a constraint is
usually recast into a more tractable linear matrix inequality (LMI) constraint and
then, is efficiently tackled by employing the S-procedure. A detailed description of
the S-procedure can be found in [45, 57], cf. Appendices B and C. For instance, the
authors of [70] adopted a CSI error model with a deterministic bound for the casca-
ded reflected channels and developed a penalty-based algorithm for minimization of
the total transmit power of an IRS-assisted wireless network. Similarly, in [71], the
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Abbildung 1.8: Illustration of some typical IRS deployment scenarios in wireless com-
munication systems.

authors modeled the IRS-assisted channels by a norm-bounded CSI uncertainty regi-
on and proposed a computationally-efficient algorithm for maximization of the sum
rate of an IRS-aided multiuser cellular system. On the other hand, for the statistical
CSI uncertainty model, the channel estimation error is assumed to follow a circularly
symmetric complex Gaussian distribution with zero mean and known variance, resul-
ting in a probabilistic chance constraint for optimization. Such a constraint can be
tackled by either leveraging a Bernstein-type inequality to obtain an approximated
convex version of the original constraint [72] or deriving a tractable inverse cumulative
distribution function [73].
IRS Impairments: As a component in practical communication systems, IRSs ine-
vitably suffer from hardware impairments. In the literature, many works [53–56, 67,
68,71] on IRS design assumed that the phase-shift set of the IRS elements, F , is con-
tinuous, e.g., F = [0, 2π], which is an over-idealized assumption for practical IRSs. In
fact, the cardinality of the phase shift set is determined by the number of electronic
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devices (e.g., phase shifters or positive-intrinsic-negative diodes) integrated into one
single IRS element. As a result, an IRS with a large number of possible phase shifts
not only leads to a complicated integrated circuit design but also consumes a large
space. To overcome these difficulties, some works considered the practical case whe-
re each IRS element has only a small set of possible discrete phase shifts to choose
from [74–76]. In particular, the impact of having only two phase shifts for each IRS
element on the performance of an IRS-assisted NOMA system was studied in [75].
Assuming a finite phase shift set for the IRS, the authors of [76] developed a BnB-
based optimal scheme that maximized the minimum signal-to-interference-plus-noise
(SINR) among the users of an IoT network.

1.3.2.2 Author’s Contributions

In this part, we explain our four contributions [57,63,77,78] on resource allocation al-
gorithm design for IRS-assisted communication systems, see Appendices C, D, E, and
F. In particular, for each work, we list several aspects to clarify the motivation and
introduce the novel aspects of the system model, problem formulation, and solution.
Furthermore, to illustrate the algorithm design in each work, we show a flow chart
that summarizes the key transformations and optimization methods of the developed
resource allocation schemes. In the following, we sequentially discuss our main contri-
butions in [57,63,77,78].

Contributions of [57]:

• IRS-Enabled Interference Suppression in CR Networks: Underlay CR
has emerged as an efficient means to ameliorate spectrum utilization in wireless
networks. Yet, due to co-existing transmissions of the primary and secondary
networks in the same frequency band, incumbent users may suffer from severe
interference originating from the unlicensed network. To appropriately manage
the interference leakage of the secondary network, we proposed to exploit IRSs
to create beneficial wireless channel conditions for CR networks. Specifically,
to facilitate reliable communications for the primary users, we modeled the se-
condary network-induced interference and suppressed this interference below a
maximum tolerable threshold by smartly designing the IRS phase shifts. Con-
sidering the fact that the primary users may not interact with the secondary BS,
we assumed that the secondary BS can only acquire imperfect CSI of the prima-
ry users and took into account the corresponding CSI uncertainty for resource
allocation design. Our work [57] was one of the earliest papers that exploited
IRSs in wireless networks to simultaneously mitigate or suppress detrimental
interference and promote favorable signal power levels.
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Abbildung 1.9: Illustration of the optimization framework proposed in [57].

• IRS-Assisted FD Communications: As FD programmable devices, IRSs are
excellent boosters to existing FD networks to promote spectral efficiency and
inhibit severe interference. In [57], we considered an IRS-assisted FD CR net-
work, where the IRS was deployed to assist an FD BS in serving a group of
half-duplex single-antenna downlink and uplink user devices in the same time-
frequency domain. In particular, we modeled the residual SI at the secondary
FD BS and revealed that the IRS-induced higher-order reflections of the SI were
negligible compared to the SI itself. This first unveiled the fact that by carefully
choosing the location of the IRS and employing advanced SI cancellation tech-
niques, the deployment of the IRS would not aggravate the SI in conventional
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FD networks. Moreover, our simulation results showed that by jointly optimi-
zing the IRS elements with the other available resources, we could effectively
mitigate the co-channel interference and significantly increase spectral efficiency
compared to a baseline scheme without IRS. Our work [57] was the first paper
that exploited the FD nature of IRSs to facilitate high-quality FD communica-
tions and developed a corresponding optimization framework for IRS-assisted
FD communications.

• Upper Bound for Semi-Infinite Constraint: In practice, it is challenging
for the unlicensed FD BS to acquire the perfect CSI of the incumbent users in
the primary network. To capture the effect of this on FD CR network design, we
adopted a bounded CSI uncertainty model for the primary users, which imposed
a semi-infinite constraint on the resource allocation optimization problem. Due
to the coupling between the beamforming vectors and the IRS reflection matrix
and the product of uncertainty terms, it was difficult to directly transform this
constraint into a tractable form, e.g., an LMI constraint. To circumvent this
difficulty, we exploited the Minkowski inequality to derive a tractable upper
bound for the interference term in the semi-infinite constraint. As a result, we
obtained an approximated version of the original optimization problem, and
then, by efficiently solving this substitute, we obtained a high-quality suboptimal
solution to the original optimization problem. Via computer simulations, we
showed that the proposed upper bound for the semi-infinite constraint was tight.

• Computational-Efficient BCD-Based Algorithm: In [57], the robust re-
source allocation design was formulated as a non-convex optimization problem
taking into account the maximum power allowance of the FD BS and the maxi-
mum interference leakage tolerance of the primary users. Due to the IRS-induced
unit-modulus constraint, the coupled optimization variables, and the product of
the uncertainty terms, it was very arduous to obtain the optimal solution in po-
lynomial time. Given the above considerations, we developed a computationally-
efficient BCD-based optimization framework for the considered IRS-aided FD
CR system. In particular, we partitioned the original optimization problem into
three subproblems and efficiently tackled them in an alternating manner. We
clarified that the proposed BCD-based algorithm produced a high-quality so-
lution with guaranteed convergence and confirmed this via simulations. In Fig.
1.9, we show the key elements and transformations of the proposed BCD-based
algorithm.

Contributions of [63]:
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Abbildung 1.10: Flow chart of the optimal and suboptimal resource allocation opti-
mization algorithms developed in [63].

• Practical Large IRS-Assisted Simultaneous Wireless Information and
Power Transfer (SWIPT) Systems: In practice, the IRS usually comprises
thousands of phase-shift elements [29, 79]. Yet, most existing works in the lite-
rature proposed to optimize the phase shift of each individual IRS element, and
thus, the complexity of this element-wise optimization framework was propor-
tional to the number of elements [53–55, 67, 68, 71]. Hence, for practically large
IRSs, such an optimization framework may lead to a significant computational
burden which hampers real-time IRS design. To overcome this difficulty, we
employed a novel scalable optimization framework developed in [37] to design
a large IRS-assisted SWIPT system, cf. Appendix D. Moreover, unlike many
existing works, which assumed an over-simplified linear energy harvesting mo-
del [80, 81], in our work [63], we adopted a realistic sigmoidal function-based
energy harvesting model for energy harvesting receivers.

• Transmission Mode Pre-Selection Criterion Design: In [63], we adopted
a scalable two-stage optimization framework to design the considered system
in two consecutive offline and online stages. Given a transmission mode set
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generated in the offline stage, we developed two new transmission mode pre-
selection criteria to remove less efficient transmission modes. Simulation results
showed that compared to the trial criterion developed in [37], our two new
criteria respectively taking into account user fairness and exploiting concrete
features of SWIPT systems achieved a better performance.

• Optimal Solution: After excluding less efficient transmission modes from the
set, we jointly optimized the downlink beamforming and IRS transmission mode
selection strategy to minimize the total transmit power at the BS. The resour-
ce allocation algorithm design was formulated as a non-convex combinatorial
optimization problem taking into account the QoS constraints of both the infor-
mation decoding receivers and the energy harvesting receivers. To establish a
performance upper bound, we developed an enumeration-based optimal scheme
by exploiting BnB theory. In particular, we derived upper and lower bounds for
the original optimization problem, formulated a node partition rule, and develo-
ped a problem branching strategy for the considered problem. The BnB-based
algorithm produced the globally optimal solution to the original optimization
problem in a finite number of iterations.

• Suboptimal Solution: Due to high complexity of the BnB-based algorithm,
we capitalized on the penalty method and SCA to develop a low-complexity
algorithm at the expense of an acceptable loss in performance. This algorithm
asymptotically converged to a local minimum value of the considered problem
within a few iterations which makes it attractive for application in practical IRS
systems. Simulation results confirmed the close-to-optimal performance of the
suboptimal scheme. The flow chart that contains the key steps of the proposed
optimal and suboptimal schemes is shown in Fig. 1.10.

Contributions of [77]:

• IRS-Enabled Secure Communications in Multiuser Systems: Conside-
ring the random nature of wireless channels, traditional security provisioning
techniques such as physical layer security may not ensure secure communicati-
ons, especially in an unfavorable radio propagation environment. To overcome
this difficulty, in [77], we proposed to exploit the IRS for physical layer secu-
rity provisioning in an IRS-assisted communication system. Unlike the works
in [69,82] that focused on IRS-assisted single-user systems, our work in [77] was
the first to consider a more general multiuser system and developed a correspon-
ding algorithm that maximized the system sum secrecy rate.
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veloped in [77].

• Artificial Noise-Enhanced Physical Layer Security: Although the IRS
can be exploited to customize favorable wireless channels, it is still possible
that the system sum secrecy rate is low, especially when the eavesdropper has
sufficient computational resources to exclude all multiuser interference from the
received mixed signal stream. To overcome this shortcoming, in [77], we proposed
to utilize artificial noise (AN) at the BS to intentionally demote the quality
of the eavesdropper’s channel. To this end, we jointly designed the downlink
beamformers, the AN covariance matrix, and the reflection matrix at the IRS.
Although employing AN did not introduce additional non-convex constraints, it
indeed increased the number of the optimization variables and exacerbated the
coupling of variables in the optimization problem. This prompted us to attach
great importance to computational complexity when designing the optimization
algorithm.
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sed in [78].

• Computationally-Efficient Algorithm: Due to the unit-modulus constraint
and the coupling between the IRS phase-shift pattern and other optimization
variables, it was difficult to find the maximum value of the considered optimiza-
tion problem. As a compromise, we developed a low-complexity suboptimal
algorithm that divided the original feasible set into two disjoint subsets and
efficiently solved the resulting two subproblems in an alternating manner. In
particular, given fixed IRS phase-shift coefficients, we obtained the locally op-
timal solution of the subproblem involving the other optimization variables by
employing SCA and SDR. Then, the phase-shift matrix was updated via the ma-
nifold optimization approach for given fixed beamforming vectors and the AN
pattern. The overall algorithm was assured to yield a stationary point of the
considered optimization problem. Our work [77] was one of the earliest papers
that exploited manifold optimization theory to directly tackle the IRS-induced
unit-modulus constraint. The flow chart of the developed algorithm is illustrated
in Fig. 1.11.

Contributions of [78]:

• Active IRS-Assisted Green Communications: Due to the double path
loss effect, conventional passive IRS may not be able to provide the desired per-
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formance gains for wireless networks. To tackle this obstacle, we proposed to
deploy a more powerful IRS, i.e., an active IRS, in a multiuser wireless network
and investigated the joint BS beamforming vector and IRS reflection coefficient
design to provide satisfactory communication services for multiple users in a
power-efficient manner. Simulation results showed that although active IRSs re-
quired an extra power supply, they did further boost the energy efficiency of the
considered system compared to a conventional passive IRSs. Moreover, we also
revealed that active IRSs could effectively mitigate the double path loss effect
and facilitate IRS-assisted green communications. Our work [78] was one of the
earliest papers that proposed to employ active IRSs to enhance the performance
of wireless networks and developed a corresponding efficient resource allocation
algorithm.

• Bilinear Transformation-based Low-Complexity Algorithm: Different
from passive IRSs that can merely adjust the phase of the impinging signals,
active IRSs introduce extra DoFs by varying the magnitude of the impinging
signals. This is realized by jointly designing the amplification factor and the
phase-shift coefficient of the active IRSs subject to an additional maximum am-
plification power constraint. Yet, the multiplicative form of the IRS reflection
matrix exacerbates the coupling issue for joint BS and IRS design. In the literatu-
re, such variable coupling is usually tackled by employing BCD, i.e., separating
the coupled optimization variables into different optimization blocks and sol-
ving one block at a time. Yet, such straightforward algorithms compromise the
joint optimality of the considered problems. Moreover, rather than developing
a stand-alone BCD algorithm, other advanced optimization tools have to be ex-
ploited to avoid infeasible solutions. Given the above considerations, in [78], we
proposed to exploit a novel bilinear transformation (BT) for efficient algorithm
design. In particular, the BT intrinsically sidestepped the variable coupling by
regarding the product term of the IRS optimization variables as a new entirety,
leading to an equality constraint. Then, this equality constraint was transfor-
med equivalently into two more tractable constraints, i.e., a DC constraint and
a positive semidefinite constraint, which could be efficiently tackled by existing
approaches such as SCA. By applying the proposed BT-based algorithm, we
could find local minima of the considered optimization problem. The flow chart
of the developed BT-based algorithm is illustrated in Fig. 1.12.
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Fundamentals of Mathematical
Optimization

In this chapter, we provide some basic information about mathematical optimization
theory that we believe can help the readers to better understand our contributions
in Appendices B-F. In particular, in Section 2.1, we review some basic concepts and
definitions of mathematical optimization, concentrating on the particular role of con-
vex optimization. Yet, in most cases, wireless network design intrinsically results in
a non-convex optimization problem. As a result, in Section 2.2, we introduce some
optimization techniques that we utilized to tackle the different types of non-convex
optimization problems formulated in our works [45,57,63,77,78], cf. Appendices B-F.
We note that, in both sections, we provide only the level of detail that is needed for
the scope of this thesis. A comprehensive overview of mathematical optimization can
be found in [83].

2.1 Convex Optimization Problems
As a subfield of mathematical optimization, convex optimization, i.e., aiming to mini-
mize a convex function over a convex set, has found numerous applications in a wide
range of disciplines such as engineering and economics. Due to their favorable proper-
ties (cf. Section 2.1.3), convex optimization problems can be efficiently and optimally
solved by employing well-tested algorithms such as the interior-point algorithm [83]
or subgradient projection algorithm [84]. Moreover, some standard convex program
solvers such as CVX [85] and YALMIP [86] are widely adopted in the resource alloca-
tion and system design literature to efficiently solve convex optimization problems. As
a result, it is a great advantage if an optimization problem can be formulated or reco-
gnized as a convex problem. Therefore, in the following, we review some fundamental
aspects of convex optimization.
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2.1.1 Convex Sets

Definition 2.1 (Convex set [83]). A set S is convex if, given any two points in S,
the line segment that connects the two points also lies in S, i.e., if for any x, y ∈ S
and 0 ≤ α ≤ 1, we have

αx + (1 − α)y ∈ S. (2.1)

In Fig. 2.1, we show simple examples of convex and non-convex sets in R2. Note that
circles, ellipsoids, Euclidean balls, hypercubes, polygons having interior angles less
than 180 degrees, and non-negative orthants are all convex sets. Also, the intersection
of an arbitrary number of convex sets is again a convex set. On the other hand, rings
or sets of integers are non-convex sets [87].

2.1.2 Convex Functions

Definition 2.2 (Convex Function [83]). A function f : X → R is convex if its
domain X is a convex set and for any x, y ∈ X and 0 ≤ α ≤ 1, we have

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y). (2.2)

This inequality can be interpreted as follows: The line segment that connects the
two points

(
x, f(x)

)
and

(
y, f(y)

)
lies above the graph of f , cf. Fig. 2.2. Clearly,

all linear and affine functions are convex functions [83]. Throughout this thesis, we
denote the sets of non-negative real numbers and positive real numbers by R+ and
R++, respectively. In the following, we provide some examples of convex functions
that appear in our works in Appendices B-F.

• Power function: For p ≥ 1 or p ≤ 0, xp is convex on R+ while for 0 ≤ p ≤ 1,
−xp is convex on R+.

• Exponential function: For any a ∈ R, eax is convex on R.
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Abbildung 2.2: Illustration of the graph of a convex function. The line that connects
any two different points on the graph is always above the graph itself.

• Logarithmic function: −log(x) is convex on R++.

• Norms: Every norm on Rn is convex.

• Max function: f(x) = max(x1, · · · , xn) is convex on Rn.

Moreover, the non-negative weighted sums of convex functions, the point-wise maxi-
mum and supremum of convex functions, and the perspective of a convex function
are again convex functions. Besides, if a function f is convex, then −f is a concave
function [83].

2.1.3 Convex Optimization

A convex optimization problem in standard form is given by [83]

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, · · · , m,

hi(x) = 0, i = 1, · · · , p, (2.3)

where

• x ∈ Rn is the variable to be optimized;

• the objective function f(x) : Rn → R is a convex function;

• the inequality constraint functions gi(x) : Rn → R, i = 1, · · · , m, are convex
functions;

• the equality constraint functions hi(x) : Rn → R, i = 1, · · · , p, are affine
functions.
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Abbildung 2.3: Illustration of the globally optimal points of convex (green curve) and
non-convex (red curve) functions.

In addition, the feasible set of (2.3) is also convex. In other words, we solve a convex
optimization problem by minimizing a convex objective function over a convex feasible
region. Note that one fundamental property of convex optimization problems is that
any locally optimal point is also the globally optimal point, cf. Fig. 2.3.

Next, we briefly introduce some special classes of convex optimization problems, cf.
Fig. 2.4, that appear in our works in Appendices B-F.

• Linear programming problems: If the objective and constraint functions are
all affine functions, the corresponding problem is called a linear programming
(LP) problem. A standard LP problem is given as follows

minimize
x∈Rn

cT x + d

subject to Ax ≤ b, (2.4)

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. Besides, constant d ∈ R is usually
omitted as it has no impact on the solution. In the literature, communication
resource allocation algorithm designs such as bandwidth allocation [88] and time
slot assignment [89] are usually formulated as LP problems.

• Quadratic programming problems: A convex optimization problem is re-
ferred to as a quadratic programming (QP) problem if its objective function is
quadratic and the constraints are affine or quadratic functions. A standard QP
problem is given by [90]

minimize
x∈Rn

1
2

xT Sx + cT x + d

subject to Ax ≤ b, (2.5)
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Abbildung 2.4: Illustration of the hierarchy of convex optimization problems.

where S is an n-dimensional real-valued positive semidefinite matrix. QP is
commonly adopted when designing power allocation policies [91, 92] in cellu-
lar systems and for UAV trajectory planning in UAV-assisted communication
systems [93,94].

• Semidefinite programming problems: A standard semidefinite programming
(SDP) problem contains a matrix non-negativity constraint on the variable and
a set of linear inequalities, and is given as follows [95]

minimize
X

Tr(PX)

subject to Tr(QX) ≤ r, X ⪰ 0, (2.6)

where X ⪰ 0 indicates matrix X is an n-dimensional real-valued positive semi-
definite matrix. Matrices P and Q are also n-dimensional real-valued positive
semidefinite matrices and r ∈ R+. SDP can be used to obtain optimal beam-
forming policies in wireless networks [96, 97] or tackle IRS phase-shift design
problems in IRS-assisted communication systems [98,99].

To facilitate efficient optimization algorithm design, the above optimization problems
are sometimes transformed into equivalent versions by introducing slack variables [83]
or employing epigraph reformulations [87].
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2.2 Non-Convex Optimization Techniques
In this section, we explain the basic ideas behind some of the optimization techniques
that are adopted in our works in Appendices B-F. In particular, in Sections 2.2.1
and 2.2.2, we introduce SCA and BCD methods, respectively, which can be utilized
to tackle non-convex optimization problems efficiently and yield high-quality subop-
timal solutions. To obtain a performance benchmark for these suboptimal methods,
in Sections 2.2.3 and 2.2.4, we discuss monotonic optimization and BnB approaches,
which allow us to directly solve non-convex optimization problems and find the glo-
bally optimal solution at the cost of a large amount of computational resources. Note
that there is always a complexity-optimality trade-off in resource allocation algorithm
design, and we can manipulate this trade-off to satisfy the requirements of different
application scenarios.

2.2.1 Successive Convex Approximation Method

When designing wireless networks, system designers always prefer to formulate the
resource allocation algorithm design as a convex optimization problem since, in this
case, the optimal resource allocation policy can be quickly found. Yet, as more ad-
vanced technologies are introduced in wireless communication systems and different
wireless resources are to be jointly allocated, system designers are faced with more
complicated system models and non-convex resource allocation optimization problems
become unavoidable. In most cases, the non-convexity originates from a non-convex
objective function or a few non-convex constraints while the remaining functions in
the optimization problem are still convex. This observation inspired the development
of the SCA method. The basic idea behind the SCA method can be explained as fol-
lows: Approximate the involved non-convex functions by tractable convex functions
and iteratively solve a sequence of approximated versions of the original problem
until convergence. We assume an optimization problem with a non-convex objective
function, which is given as follows

minimize
x∈R

f(x)

subject to g(x) ≤ c. (2.7)

Instead of directly solving the above non-convex problem, we construct a surrogate
function, e.g., a global overestimator, for the objective function in (2.7) as follows

f(x) ∆= f ′(x(j))(x − x(j)) ≥ f(x), (2.8)
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Abbildung 2.5: Illustration of the basic idea behind the SCA algorithm for a minimiza-
tion problem. The green-colored dashed line and the orange-colored
solid line denote the original objective function f(x) and the corre-
sponding overestimators f(x), respectively. The blue-colored rectan-
gles and the red-colored triangles denote the feasible points of f(x)
and the optimal point of f(x), respectively.

where x(j) is a given feasible point and j is the iteration index. Then, in the j-th
iteration of the SCA algorithm, an upper bound of the minimization problem in (2.7)
can be obtained by solving the following optimization problem

minimize
x∈R

f(x)

subject to g(x) ≤ c. (2.9)

By employing the SCA algorithm, the upper bound for (2.7) is gradually tightened. It
has been proved in [100] that SCA methods are assured to provide a locally optimal
solution to the original problem in (2.7). In Fig. 2.5, we illustrate the basic idea behind
the SCA method. In our works [45] and [63], we develop SCA-based algorithms to find
locally optimal solutions to the considered optimization problems, cf. Appendices B
and D.

2.2.2 Block Coordinate Descent Method

To effectively improve the performance of wireless networks, system designers have to
jointly design the available communication resources such as power and bandwidth.
Yet, in some wireless communication systems, e.g., IRS-assisted communication sys-
tems, the optimization variables such as the IRS phase-shift matrix and the BS beam-
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Abbildung 2.6: Illustration of the globally optimal solution, locally optimal solution,
and saddle point of a maximization problem to which the BCD-based
algorithm potentially converges.

forming vectors appear as a product term in the problem formulation [101]. This
inevitably causes a coupling issue for efficient resource allocation algorithm design,
which is challenging to handle. An optimization problem containing two coupled op-
timization variables, x1 and x2, is given by

minimize
x1,x2∈R

f(x1, x2)

subject to g(x1, x2) ≤ c. (2.10)

In fact, the joint optimization of the coupled variables x1 and x2 results in an intrinsi-
cally challenging non-convex problem. To circumvent this difficulty, a widely adopted
method is BCD. In particular, instead of directly solving the original optimization
problem, the BCD approach divides the coupled optimization variables into disjoint
blocks where each block is associated with one subproblem. Then, each subproblem
is solved alternately. Hence, the optimization problem in (2.10) can be tackled by
solving the following two subproblems in an alternating manner

subproblem 1:
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minimize
x1∈R

f(x1|x(i)
2 )

subject to g(x1|x(i)
2 ) ≤ c. (2.11)

subproblem 2:

minimize
x2∈R

f(x2|x(i)
1 )

subject to g(x2|x(i)
1 ) ≤ c. (2.12)

where x
(i)
1 and x

(i)
2 represent the feasible solutions in the i-th iteration of the BCD

algorithm. In particular, in the i-th iteration, we solve for x1 or x2 with the other
variable fixed. According to [102], the BCD algorithm is guaranteed to converge to a
stationary point of the original optimization problem. However, since the BCD me-
thod destroys the joint optimality of the original optimization problem, the resulting
stationary points can be the globally optimal solution, locally optimal solutions, or
saddle points. In Fig. 2.6, we consider a maximization problem involving two coupled
optimization variables and show the aforementioned points that can be obtained by
employing the BCD algorithm. In fact, both the optimization order of the blocks and
the initial points have an impact on the value to which the BCD algorithm converges.
In our works [57] and [77], we develop BCD algorithms to find suboptimal solutions
to the considered optimization problems, cf. Appendices C and E.

2.2.3 Monotonic Optimization Approach

Although many resource allocation optimization problems have a non-convex nature,
they do preserve monotonicity, i.e., the objective function is monotonically increasing
or decreasing with respect to the optimization variables over the feasible set [103].
Hence, one can exploit this property to iteratively reduce an upper bound on the
objective function until the optimum is obtained. A standard form monotonic opti-
mization problem is given as follows [104]

maximize
x∈Rn

+
f(x)

subject to x ∈ G, (2.13)

where f(x) : Rn
+ → R is an increasing function of x. More mathematical prelimina-

ries on monotonic optimization can be found in Appendix B. Moreover, x belongs to
a normal set G, i.e., for any x ∈ G the set [0, x] ⊆ G. The above monotonic optimiza-
tion problem can be optimally solved by employing advanced monotonic optimization



44 Kapitel 2 Fundamentals of Mathematical Optimization

0 2 4 6 8

x
1

0

1

2

3

4

5

6
x

2

Feasible Region Boundary

Globally Optimal Solution

0 2 4 6 8

x
1

0

1

2

3

4

5

6

x
2

0 2 4 6 8

x
1

0

1

2

3

4

5

6

x
2

0 2 4 6 8

x
1

0

1

2

3

4

5

6

x
2

0 2 4 6 8

x
1

0

1

2

3

4

5

6

x
2

0 2 4 6 8

x
1

0

1

2

3

4

5

6

x
2

Iteration 1Initialization

Iteration 2

Iteration 50Iteration 20

Iteration 5

Abbildung 2.7: Illustration of a few snapshots of the polyblock outer approximation
algorithm to produce the optimum of a monotonic optimization pro-
blem involving two optimization variables x1 and x2. The blue-colored
polyblock encloses the feasible set of the monotonic optimization pro-
blem and the dashed line denotes the boundary of the feasible set. The
red-colored star denotes the globally optimal solution to the conside-
red problem.

algorithms, e.g., the two-layer polyblock outer approximation algorithm [104,105]. In
particular, a polyblock P that contains the feasible set G is constructed and an upper
bound of the objective function can be calculated based on the vertex of P . Then,
in the outer layer of the algorithm, the block P is successively pruned by removing
a cone from the non-negative orthant over iterations. Since it is difficult to charac-
terize the whole feasible set G, a bisection projection search is implemented in the
inner layer of the algorithm to find the projection of a vertex on the upper bounda-
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Abbildung 2.8: Illustration of a BnB-based tree structure for solving a BIP problem
involving two binary optimization variables. The solid-line arrows and
dashed-line arrows denote the two cases where the optimization varia-
ble is set to 0 and 1, respectively. The yellow-colored and red-colored
nodes denote the optimal and non-optimal solutions to the BIP pro-
blem, respectively.

ry of the feasible set. We terminate the two-layer algorithm if the gap between the
vertex of the current P and its projection on the upper boundary of G is smaller
than a pre-defined threshold. It has been proved in [104] that this two-layer iterative
algorithm always terminates at the optimum of the considered problem. Yet, the com-
putational complexity of such an algorithm increases exponentially with the number
of optimization variables. In the literature, monotonic optimization has been shown
to be a promising means for revealing a performance upper bound for UAV-assisted
communication systems [40] and NOMA systems [68]. An example of the polyblock
outer approximation algorithm is given in Fig. 2.7. Note that although the feasible
region of the considered two-variable optimization problem is a non-convex set, the
polyblock outer approximation algorithm finds the optimum after sequentially shrin-
king the polyblock for roughly 50 times. A monotonic optimization-based algorithm
is developed in our contribution [45] to determine a performance upper bound of the
considered system, cf. Appendix B.

2.2.4 Branch-and-Bound Approach

In the literature, some resource allocation designs such as user scheduling and sub-
carrier assignment involve integer optimization variables [92], leading to non-convex
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binary integer programming (BIP) problems. In particular, a BIP problem involves a
discrete feasible set and is given as follows

minimize
x

f(x)

subject to x ∈ {0, 1}n . (2.14)

The binary feasible set makes the optimization problem intrinsically non-convex. To
tackle such a difficulty, some works proposed to directly relax the discrete feasible set
into a continuous set, i.e., replacing {0, 1}n by [0, 1]n. Yet, by doing this, the resulting
solution is likely to be an infeasible solution to the original optimization problem [106].
Alternatively, one may transform the binary constraint into the following equivalent
constraints

0 ≤ xi ≤ 1, i = 1, · · · , n, (2.15)
n∑

i=1
xi − x2

i ≤ 0. (2.16)

However, the inequality constraint in (2.16) is a non-convex DC constraint, which is
still an obstacle for optimal resource allocation algorithm design. Given the above con-
siderations, the BnB approach has emerged as an effective means to find the optimum
of the optimization problem in (2.14). The essential idea behind BnB algorithms is
to implement a tree expansion by repeatedly employing three steps, i.e., partitioning,
branching, and bounding, until the optimal solution is acquired [107]. Initially, we
map the feasible set of the original problem onto the root node of the search tree.
For a given partitioning rule, we split each node into two subnodes, where each sub-
node represents a subset of the feasible set of the original problem. Accordingly, we
formulate two subproblems and optimize each subproblem over a given feasible set
associated with a subnode. Then, we compute the objective function value of each
subproblem and construct both an upper bound and a lower bound for the original
optimization problem. A subnode is removed from the tree if its objective function
value is larger than the upper bound (for minimization problems) or smaller than the
lower bound (for maximization problems). As the search tree continues to expand, the
original feasible set is progressively divided into more subsets. In each iteration, we
check the objective function values of each subproblem associated with a subnode and
update the current bounds. The above procedure is repeated until there is a negligible
difference between the upper bound and the lower bound. It has been proved in [108]
that as long as the number of optimization variables is finite, the BnB algorithm is
assured to converge to the optimal value of the considered optimization problem in
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a limited number of iterations. In Fig. 2.8, we illustrate a three-tier search tree of a
BnB algorithm developed for a BIP problem involving 2 binary optimization varia-
bles. In fact, to find the optimal values of n binary optimization variables, we need
to construct an (n + 1)-tier search tree comprising at most 2n subnodes in the last
tier. A BnB algorithm is proposed in our contribution [63] to solve the considered
optimization problem optimally in a limited number of iterations, cf. Appendix D.
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Kapitel 3

Conclusions and Future Research
Directions

3.1 Conclusions
UAV and IRS are both promising enablers for future high-data rate communication
systems. Although their operational mechanisms are completely different, they both
provide additional DoFs for resource allocation design, which can be utilized to create
favorable wireless links to enhance system performance. Because of their ability to
modify the wireless channels, both techniques can be exploited to provide customized
services for dedicated users, which is a new key element for wireless network design.
In this dissertation, we investigated the resource allocation algorithm design for UAV
communication systems and IRS-assisted communication systems. In particular, in
Chapter 1, we provided a general overview of our contributions in the larger con-
text of resource allocation design for UAV- and IRS-assisted system. In Chapter 2,
fundamental convex optimization concepts and key optimization tools required to un-
derstand the author’s contributions were discussed. Our contribution focused on UAV
communications in uncertain environments, IRS-assisted FD CR networks, large IRS-
assisted SWIPT systems, secure passive IRS-assisted systems, and active IRS-assisted
systems, and are reprinted in Appendices B, C, D, E, and F, respectively. In the follo-
wing, we summarize the main takeaways from our contributions and the key findings
of this dissertation.

UAV Communications in Uncertain Environments: In our contribution [45],
Appendix B, we proposed to employ a rotary-wing UAV-based flying BS to provi-
de reliable communication services for a set of ground user devices in an uncertain
environment with practical polygon NFZs. To this end, we modeled the UAV body
jittering, user location estimation error, randomness of wind gusts, and polygon NFZs.
Then, we jointly optimized the 2-D velocity and beamforming policy for minimizati-
on of the total UAV power consumption while meeting the QoS constraints of the
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ground devices. The performance cap of the considered system was revealed by a
monotonic optimization-based optimal algorithm while an SCA-based low-complexity
algorithm was developed to facilitate the real-time online design of the UAV system.
Our simulations results showed that: 1) for both the optimal and suboptimal schemes,
the UAV consumes significantly less power compared to that for non-robust schemes
and two low-complexity benchmark schemes; 2) the body jittering and the imperfect
knowledge of the user location has to be carefully considered to facilitate reliable com-
munications for practical UAV systems; 3) by exploiting the available information
on the wind speed, we can control the UAV to fly along the desired trajectory in a
power-efficient manner; 4) in the presence of NFZs and under strong wind conditions,
it is of utmost importance to develop robust resource allocation algorithms for the
safe operation of UAVs.

IRS-Assisted FD CR Networks: In our contribution [57], Appendix C, we pro-
posed to deploy an IRS in an FD CR network and exploited the programmablity of
the IRS to combat the severe interference in the considered system. To this end, we
jointly optimized the downlink and uplink beamforming policy at the FD BS, the IRS
reflection coefficients, and the transmit power of the uplink users for maximization
of the spectral efficiency of the secondary network. To tackle the variable coupling in
the formulated problem, we divided the original feasible set into three disjoint subsets
where each subset was associated with a subproblem. Exploiting BCD optimization
theory, we efficiently solved the three subproblems in an alternating manner. The
proposed BCD-based algorithm produced an efficient suboptimal solution to the con-
sidered problem. Via simulations, we showed that: 1) the proposed scheme significantly
outperforms four considered baseline schemes in terms of system spectral efficiency; 2)
to achieve the performance gains introduced by IRSs, system designers have to take
into account the CSI uncertainty of the PUs for robust IRS-assisted FD CR system
design; 3) by jointly designing the IRS with the other components of FD CR networks,
the severe interference in FD CR systems can be effectively suppressed.

Large IRS-Assisted SWIPT Systems: In our contribution [63], Appendix D,
we considered a SWIPT system assisted by a practically large IRS and adopted a
realistic sigmoidal function-based EH model and a physics-based IRS model. To faci-
litate efficient real-time design for the considered system, we adopted a novel scalable
two-stage design framework consisting of an offline pre-design stage and an online
optimization stage. Specifically, for a given transmission mode set generated offline,
we developed two novel transmission mode pre-selection criteria to wisely exclude
unfavorable candidates from the set. Subsequently, we designed the optimal trans-
mission mode selection and beamforming policy for the considered system via online
optimization to minimize the total transmit power. The performance upper bound of
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the considered system was revealed by a BnB-based enumeration algorithm. We also
developed an SCA-based iterative algorithm to tackle the formulated combinatorial
optimization problem in polynomial time. Our simulation results showed that: 1) the
proposed schemes significantly reduce the required transmit power consumption com-
pared to three baseline schemes with simpler implementation; 2) the low-complexity
SCA-based algorithm achieves a near-optimal performance with a low computatio-
nal complexity; 3) the scalable optimization framework and the developed algorithms
enable us to flexibly manipulate the tradeoff between complexity and performance as
needed for different IRS application scenarios.

Secure Passive IRS-Assisted Systems: In our contribution [77], Appendix E,
we proposed to exploit IRSs and AN to improve the physical layer security of a multi-
user MISO system. In particular, we jointly optimized the active beamforming vectors,
the AN covariance matrix, and the IRS passive beamforming matrix for maximizati-
on of the system sum secrecy rate. Capitalizing on SCA and manifold optimization
methods, we developed a polynomial time alternating optimization algorithm and
determined a high-quality solution to the formulated non-convex problem. Our simu-
lation results revealed that: 1) the proposed scheme can substantially improve the
system secrecy performance compared to two baseline schemes with partially fixed
resource allocation policies; 2) the location of the IRS has to be carefully chosen to
reduce the detrimental double path loss effect.

Active IRS-Assisted Systems: In our contribution [78], Appendix F, we pro-
posed to exploit the active IRS in a multiuser communication system to effectively
compensate for the double path loss effect-induced performance loss. To this end, we
jointly designed the BS beamformers and the IRS reflection coefficients to facilitate
green communications in the considered system. To tackle the non-convex optimiza-
tion problem complicated by coupled optimization variables, we resorted to a novel
bilinear transformation to preserve joint optimality and developed an efficient algo-
rithm that is guaranteed to converge to a locally optimal solution to the considered
problem. Simulation results showed that: 1) the proposed scheme can significantly
lower the required transmit power compared to two baseline schemes; 2) active IRSs
outperform conventional passive IRSs in terms of energy efficiency and are promising
means to extenuate the disadvantageous double fading effect when employing IRSs in
wireless networks.

3.2 Topics for Future Research
In the following, we discuss potential directions for future research that are related to
the contribution chapters of this dissertation.



52 Kapitel 3 Conclusions and Future Research Directions

• UAV Communications: For UAV communications, the following future rese-
arch directions are attractive.

– Optimization Framework for Swarm UAV Systems: Due to the high mobi-
lity and low cost, a large number of UAVs can be deployed in conventional
wireless networks and collaborate with each other to accomplish sophisti-
cated and demanding tasks. To this end, various types of constraints have
to be taken into account for swarm UAV system design [109]. First, kinetic
constraints and power constraints should be imposed on the UAV trajectory
design to facilitate power-efficient UAV communications. Second, geome-
trical constraints such as NFZs or safe regions should be incorporated in
the corresponding design problem to ensure secure and safe communicati-
ons. Third, to provide ubiquitous and sustainable communication services,
system designers may also have to account for other practical issues such
as UAV charging and maintenance. As a result, more efficient and compre-
hensive optimization frameworks are needed to support real-time swarm
UAV communications.

– Deep Learning-Based UAV Communication Systems: In the literature on
UAV communications, most works adopted a remote control UAV or a
UAV with a pre-designed trajectory. However, these mechanisms either re-
quire a human operator or may not be adaptive to the quickly varying
radio propagation environment. To fully exploit the high maneuverability
of the UAV, one can employ deep learning theory to develop an adaptive
optimization framework to support autonomous UAVs [110]. In particular,
based on field measurement data, a decision-making optimization frame-
work can be established by training artificial neural networks. How to apply
deep learning techniques to achieve fully autonomous UAV-enabled adap-
tive communications is an attractive topic for future research.

• IRS-Assisted Communications: For IRS-assisted communications, the follo-
wing future research topics are of interest.

– Resource Allocation Algorithm Design for INW-Based IRS Systems: Com-
pared to IDS-based or active IRS models, the INW-based IRS model pro-
vides additional DoFs for IRS design which can further enhance system
performance without consuming additional amplification power [61]. Yet,
due to the INW model-induced intractable constraints, the corresponding
resource allocation algorithm design for a multiuser communication sys-
tem is still an open problem. Developing the optimal algorithm to reveal
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a performance benchmark for the INW-based IRS model or suboptimal al-
gorithms to facilitate efficient design for practical INW-based IRS-assisted
systems are interesting research directions.

– Frequency-Dependent Response Model for IRSs: Most of the works in the
literature assumed that the IRS response is identical for EM waves having
different frequencies. This assumption is in general valid for the sub-6 GHz
frequency band. Yet, for future wireless networks where the carrier frequen-
cy can be in the mmWave or terahertz frequency ranges, this assumption
may no longer be valid, cf. [27]. Hence, to effectively release the full po-
tential of IRSs in future wireless networks, it is necessary to exploit data
acquired in field measurements and develop a new IRS model to captu-
re the impact of the frequency of the impinging waves on the IRS phase
responses.

– Optimization Framework Design for Multifunctional IRSs: Due to the de-
velopment of advanced meta-materials, meta-surface elements become gra-
dually empowered with more functionalities such as wave absorption, re-
fraction, and beam separation [111]. Moreover, due to the sub-wavelength
size and the low cost of meta-surface elements, the designers can integrate
different kinds of meta-surface elements into one single IRS to satisfy the
requirements of different application scenarios. Yet, for such multifunction-
al IRSs, it is necessary to modify the existing design frameworks to support
the development of more flexible resource allocation algorithms taking into
account additional design dimensions such as different operational modes
and the number of elements. This is an attractive research direction to fa-
cilitate the application of more powerful IRSs in future wireless networks.
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Abstract— In this paper, we investigate robust resource allo-
cation algorithm design for multiuser downlink multiple-input
single-output (MISO) unmanned aerial vehicle (UAV) communi-
cation systems, where we account for the various uncertainties
that are unavoidable in such systems and, if left unattended,
may severely degrade system performance. We jointly optimize
the two-dimensional (2-D) trajectory and the transmit beam-
forming vector of the UAV for minimization of the total power
consumption. The algorithm design is formulated as a non-
convex optimization problem taking into account the imperfect
knowledge of the angle of departure (AoD) caused by UAV
jittering, user location uncertainty, wind speed uncertainty, and
polygonal no-fly zones (NFZs). Despite the non-convexity of
the optimization problem, we solve it optimally by employing
monotonic optimization theory and semidefinite programming
relaxation which yields the optimal 2-D trajectory and beam-
forming policy. Since the developed optimal resource allocation
algorithm entails a high computational complexity, we also
propose a suboptimal iterative low-complexity scheme based on
successive convex approximation to strike a balance between
optimality and computational complexity. Our simulation results
reveal not only the significant power savings enabled by the
proposed algorithms compared to two baseline schemes, but also
confirm their robustness with respect to UAV jittering, wind speed
uncertainty, and user location uncertainty. Moreover, our results
unveil that the joint presence of wind speed uncertainty and NFZs
has a considerable impact on the UAV trajectory. Nevertheless,
by counteracting the wind speed uncertainty with the proposed
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robust design, we can simultaneously minimize the total UAV
power consumption and ensure a secure trajectory that does not
trespass any NFZ.

Index Terms— Robust trajectory design, multi-antenna UAV,
UAV communication systems, no-fly zones, aerodynamic power
consumption, disjunctive programming, monotonic optimization.

I. INTRODUCTION

UNMANNED aerial vehicle (UAV) based wireless com-
munication systems have received considerable attention

as a promising approach for offering real-time high data-rate
communication services [1]– [8]. Compared to conventional
cellular systems relying on a fixed terrestrial infrastructure,
UAV-assisted communication systems can provide on-demand
connectivity by flexibly deploying UAV-mounted wireless
transceivers over a target area. For instance, in the case of
natural disasters and major accidents, UAVs can be employed
as aerial base stations to establish temporary communication
links in a timely and cost-effective manner. Moreover, due to
their high mobility and maneuverability, UAVs can adapt their
trajectories based on the actual environment and terrain which
improves system performance [4]. As a result, UAV-assisted
communication systems have drawn significant attention from
both academia and industry. For instance, the authors of [5]
studied suboptimal UAV trajectory design for maximization
of the energy-efficiency of UAV communication systems. The
authors of [6] proposed a suboptimal joint trajectory, power
allocation, and user scheduling algorithm for maximization
of the minimum user throughput in multi-UAV systems.
Secure UAV communications was investigated in [7] where
the trajectory of a UAV and its transmit power were jointly
optimized to maximize the system secrecy rate. The authors
of [8] proposed a solar-powered UAV communication system
and studied the jointly optimal resource allocation and UAV
trajectory design for maximization of the system sum through-
put. In fact, the throughput of UAV communication systems
can be further improved by equipping multiple antennas at
the wireless transceivers [9]. In particular, the authors of [10]
studied suboptimal beamforming design and UAV positioning
for maximization of the system sum throughput of wireless

0090-6778 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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UAV relay networks. In [11], the authors studied the jointly
suboptimal beamforming and power allocation design for
maximization of the achievable rate of a UAV-enabled relaying
system. However, the designs in [5]– [8], [10], [11] assume a
perfectly stable flight and perfect knowledge of the locations of
the users which are overly idealistic assumptions for practical
UAV-based communication systems. In practice, the stability
of the UAV is impaired by unavoidable body jittering during
the flight [12], [13], and in general, perfect knowledge of the
user locations cannot be acquired due to the limited accuracy
of positioning modules [14]. Since their design is based on ide-
alistic assumptions, the existing resource allocation schemes
cannot provide reliable high data-rate communication services
in the presence of UAV jittering and user location uncertainty.

In practical UAV communication systems, UAV-mounted
transceivers flying in the sky commonly encounter strong
wind which leads to non-negligible body jittering [15]. It is
reported in [16] that the jittering angles of UAVs can assume
values of up to 10 degrees. As a result, the estimation of
the angles of departure (AoDs) between the UAV and the
ground users becomes inaccurate which leads to increased
AoD estimation errors [17]. In fact, the impact of AoD estima-
tion errors cannot be neglected in UAV-based communication
systems, especially for multiple-input single-output (MISO)
communication systems. In particular, the gain introduced by
multiple antennas cannot be fully exploited in the presence
of AoD estimation errors. Moreover, as the communication
links between the UAV and the ground users are typically
line-of-sight (LoS) dominated [18], accurate AoD knowledge
is essential for performing efficient beamforming at the UAVs.
However, in the presence of AoD estimation errors, UAVs
cannot perform accurate beamforming which can degrade the
system performance significantly. Moreover, wind also affects
the UAV ground speed and alters the planned trajectory, which
may cause serious safety issues such as speeding or crashing
of UAVs [19]. Therefore, taking into account the impact of
wind is of utmost importance for the design of practical
UAV communication systems. In addition, the impact of
the weather conditions and electromagnetic interference may
cause large user location estimation errors [14]. The additional
path loss resulting from user location uncertainty may impair
the communication links between the UAV and the ground
users. Furthermore, the schemes in [5]– [8], [10], [11] do not
consider any geometrical constraints on the UAV trajectory,
which may be imposed in practical UAV-based communication
systems. For example, flying UAVs above areas such as mili-
tary bases, government agencies, strategic facilities, and civil
aviation airports is strictly prohibited [20], [21]. As a result, for
security reasons, no-fly zones (NFZs) are commonly imposed
on UAVs, which makes the trajectory design for UAV-assisted
communications more challenging [22]. To tackle this issue,
some initial efforts have been made in the literature [20], [23].
In particular, the authors of [20] proposed a decision-making
algorithm based on Dubins path theory to prevent UAVs from
cruising over NFZs. The authors in [23] investigated the
resource allocation design for UAV-enabled communication
systems and proposed an iterative algorithm to maximize the
system sum throughput by jointly optimizing the subcarrier

allocation policy and the UAV trajectory taking into account
NFZs. However, these works assumed cylindrical NFZs which
is not always justified. According to [24], practical NFZs can
be modeled as polygons, and cylindrical NFZs are only a
subcase of polygonal NFZs. Hence, the algorithms developed
in [20] and [23] cannot ensure accurate trajectory design for
realistic UAV communication systems. Indeed, UAV resource
allocation and trajectory optimization taking into account
polygonal NFZs results in a disjunctive programming problem
[25] which complicates the algorithm design. Furthermore,
most of the existing trajectory design and resource allocation
algorithms for UAV-assisted communication systems are based
on suboptimal solutions of the respective optimization prob-
lems [5]– [7], [23], and the performance gap between these
algorithms and the optimal solutions is not known. To the
best of the authors’ knowledge, the optimal joint trajectory
and resource allocation algorithm design for multiuser UAV
communication systems in the presence of AoD estimation
errors, user location uncertainty, wind speed uncertainty, and
polygonal NFZs has not been investigated in the literature, yet.

In this paper, we address the aforementioned issues. To this
end, the joint trajectory and resource allocation algorithm
design for multiuser downlink UAV communication systems
is formulated as a non-convex optimization problem for
minimization of the total UAV power consumption in each
time slot. The problem formulation takes into account the
imperfect knowledge of the AoD caused by UAV jittering,
wind speed uncertainty, user location uncertainty, polygonal
NFZs, and the quality-of-service (QoS) requirements of the
users. Although the considered optimization problem is non-
convex and difficult to tackle, we solve it optimally by
employing monotonic optimization theory [26] and semidefi-
nite programming (SDP) relaxation [27] to obtain the optimal
2-D trajectory and the optimal beamformer. Due to its high
computational complexity, the optimal scheme mostly serves
as a performance benchmark for low-complexity subopti-
mal schemes. Therefore, we also develop a low-complexity
suboptimal iterative algorithm based on successive convex
approximation (SCA) [28], which is shown to achieve a close-
to-optimal performance. Our simulation results not only reveal
the dramatic power savings enabled by the proposed resource
allocation algorithms compared to two baseline schemes but
also confirm their robustness with respect to UAV jittering,
wind speed uncertainty, and user location uncertainty. More-
over, our results show that the impact of NFZs and wind speed
uncertainty on the power consumption of the UAV can be
efficiently mitigated by the proposed robust design.

The remainder of this paper is organized as follows.
In Section II, we introduce the considered MISO UAV
communication system model and formulate the proposed
optimization problem. The optimal and suboptimal joint 2-D
trajectory and beamforming algorithm designs are provided
in Sections III and IV, respectively. In Section V, simulation
results are presented, and Section VI concludes the paper.

Notations: In this paper, matrices and vectors are denoted
by boldface capital and lower case letters, respectively. RN×M

and CN×M denote the sets of all N × M real-valued and
complex-valued matrices, respectively. HN denotes the set of
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Fig. 1. A multiuser unmanned aerial vehicle (UAV) communication system
with one UAV and K = 2 users. The UAV is equipped with a 3× 3 uniform
planar array.

all N ×N Hermitian matrices. IN denotes the N -dimensional
identity matrix. | · | and || · || represent the absolute value
of a complex scalar and the Euclidean norm of a vector,
respectively. arcsin and arccos denote the inverse sine and
cosine functions, respectively. ∧ and ∨ denote the Boolean
operations “AND” and “OR”, respectively. xT and xH denote
the transpose and conjugate transpose of vector x, respectively.
The inequality x ≤ y of two vectors x, y ∈ RN holds
if xi ≤ yi for i = 1, · · · , N . diag(a1, · · · , an) returns
a diagonal matrix with diagonal entries a1, · · · , an. [A]i,i
denotes the (i, i)-entry of matrix A. Rank(A) and Tr(A)
are the rank and the trace of square matrix A, respectively.
A � 0 means matrix A is positive semidefinite. A ⊗ B
denotes the Kronecker product of two matrices A and B. E {·}
denotes statistical expectation. x ∼ CN (μ, σ2) indicates that
random variable x is circularly symmetric complex Gaussian
distributed with mean μ and variance σ2.

Δ= means “defined
as”. ∇xf(x) denotes the gradient vector of function f(x) with
respect to x.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first discuss the communication system,
UAV jittering, wind speed uncertainty, user location uncer-
tainty, polygonal NFZ, and aerodynamic power consumption
models. Subsequently, we formulate the proposed optimization
problem.

A. Multiuser UAV Communication System

The considered multiuser UAV communication system
model comprises one rotary-wing UAV-mounted transmitter
and K single-antenna users, indexed K Δ= {1, · · · , K},
cf. Figure 1. The UAV-mounted transmitter is equipped with
M = MxMy antennas composing an Mx × My uniform
planar array (UPA) [29]. For convenience, we define the
set of all antenna elements as M Δ= {1, · · · , M}. In order
to guarantee flight safety, we assume that the UAV flies at
a fixed flight altitude1 H0 which is higher than the tallest
obstacles in the service area [5]– [7]. Moreover, we define

1In this paper, we focus on 2-D trajectory optimization and assume that the
flight altitude is chosen sufficiently large such that a LoS between the UAV
and the ground users is guaranteed. This assumption would not be valid for
three dimensional (3-D) trajectory optimization which would lead to an even
more challenging design problem. 3-D trajectory optimization in the presence
of uncertainty is an interesting topic for future work.

vu[n] Δ= (vx
u[n], vy

u[n]) as the 2-D horizontal velocity of the
UAV in time slot n. To facilitate the UAV trajectory algorithm
design, we employ the discrete path planning approach [30].
In particular, we discretize the UAV trajectory during the
operation time horizon T into NT distinct waypoints, i.e., time
horizon T is divided into NT sufficiently small time slots of
equal duration δT = T/NT.

In scheduling time slot n, the UAV transmits K independent
signals simultaneously to the K users. Specifically, the trans-
mit signal to user k is given by xk[n] = wk[n]sk[n], where
sk[n] ∈ C and wk[n] ∈ CM×1 represent the information sym-
bol for user k and the corresponding beamforming vector in
time slot n, respectively. Without loss of generality, we assume
E{|sk[n]|2} = 1.

In this paper, we assume that the air-to-ground communi-
cation links between the UAV and the ground users are LoS
channels.2 In particular, the channel vector between the UAV
and user k in time slot n is given by [31]

hk[n] =
√

� ‖r0[n] − rk‖−1 ak[n], (1)

where � = ( c
4πfc

)2 is a constant with c being the speed of
light and fc being the center frequency of the information
carrier. r0[n] = (x0[n], y0[n], H0) and rk = (xk, yk, 0)
denote the 3-D Cartesian coordinates of the UAV in time slot
n and user k, respectively. Moreover,

√
� ‖r0[n] − rk‖−1 and

ak[n] ∈ CM×1 are the average channel power gain and the
antenna array response (AAR) between the UAV and user k
in time slot n, respectively. In particular, the AAR vector is
given by [32],

ak[n] =
(
1, · · · , e−j 2πbfc

c sinθk[n](mx−1)cosϕk[n], · · · ,

e−j 2πbfc
c sinθk[n](Mx−1)cosϕk[n]

)
⊗
(
1, · · · , e−j 2πbfc

c sinθk[n](my−1)sinϕk[n], · · · ,

e−j 2πbfc
c sinθk[n](My−1)sinϕk[n]

)
Δ= a

(
θk[n], ϕk[n]

)
, (2)

where b is the distance between the antenna elements of the
UPA, and mx and my index the rows and columns of the UPA,
respectively. θk[n] and ϕk[n] are the vertical and horizontal
AoD of the path between the UAV and user k in time slot n,
respectively. The AoDs θk[n] and ϕk[n] are functions of the
locations of user k and the UAV and are given by

θk[n]=arcsin
H0

‖r0[n]−rk‖
and ϕk[n]=arccos

y0[n]−yk

‖r′0[n]−r′k‖
,

(3)

respectively. Here, r′0[n] = (x0[n], y0[n])T contains the
horizontal coordinates of the UAV in time slot n, and r′k =
(xk, yk)T contains the horizontal coordinates of user k.

2We note that according to field measurements [33], for a UAV with a
flight altitude of 100 meters and a cell with a radius of 600 meters, the air-
to-ground links between the UAV and the ground users are guaranteed to be
LoS channels in rural areas. Besides, depending on the type of terrain and
the size of the cells, the flight altitude of the UAV can be adjusted such that
the LoS probability of the air-to-ground channel approaches one [34].
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Fig. 2. LoS channel model for the link between an antenna element
and user k. The blue beam points to user k, whereas the red beam shows
the actual beam direction caused by jittering. The left and right hand side
figures illustrate the estimated AoDs θk and ϕk , the actual AoDs θk and ϕk ,
and the AoD uncertainty Δθk and Δϕk in the vertical and horizontal planes,
respectively.

The received signal at user k in time slot n is given by

dk [n]=hH
k [n]wk [n]sk[n]︸ ︷︷ ︸

desired signal

+
∑

r∈K\{k}
hH

k [n]wr [n]sr[n]

︸ ︷︷ ︸
multiuser interference

+nk[n],

(4)

where nk[n] ∼ CN (0, σ2
nk

) denotes the additive complex
white Gaussian noise (AWGN) at user k in time slot n.
Considering (2) and (4), the received signal-to-interference-
plus-noise ratio (SINR) of user k in time slot n is given by

Γk[n] =

�

‖r′0[n]−r′k‖2
+H2

0

∣∣aH
k [n]wk[n]

∣∣2
�

‖r′0[n]−r′
k‖2

+H2
0

∑
r∈K\{k}

∣∣aH
k [n]wr[n]

∣∣2 + σ2
nk

. (5)

B. UAV Jittering Model

In practice, the stability of the UAV is impacted by the
random nature of wind gusts. In particular, in the presence of
wind, UAVs suffer from unavoidable body jittering, leading
to jittering angles [35]. Impaired by the jittering angles,
the onboard sensors of the UAV are unable to accurately
measure the AoD between the UAV and the users. Hence,
AoD estimation errors occur which leads to imperfect AoD
knowledge at the UAV. To capture this effect, we adopt a
deterministic model for the resulting AoD uncertainty [9].
Specifically, the AoDs between the UAV and user k in time
slot n, i.e., θk[n] and ϕk[n], are modeled as:

θk[n] = θk[n] + Δθk[n], ϕk[n] = ϕk[n] + Δϕk[n], ∀k, (6)

Ωk =
{
(θk[n], ϕk[n])

∣∣ e1(Δθk[n])2+e2(Δϕk[n])2≤α2
}
,

(7)

where (θk[n], ϕk[n]) and (Δθk[n], Δϕk[n]) represent the esti-
mated AoD between the UAV and user k and the unknown
AoD error, respectively, cf. Figure 2. Moreover, e1 ≥ 0 and
e2 ≥ 0 are parameters for modelling the uncertainty of the
horizontal and vertical AoDs, respectively, and continuous
set Ωk contains all possible AoD uncertainties with bounded
maximum variation α.

Considering (6), we rewrite the AAR vector as

ak[n] =
(
1, · · · , e−bsin

(
θk[n]+Δθk[n]

)
(mx−1)cos

(
ϕk[n]+Δϕk[n]

)
,

· · · , e−bsin
(
θk[n]+Δθk[n]

)
(Mx−1)cos

(
ϕk[n]+Δϕk[n]

))
⊗
(
1, · · ·, e−bsin

(
θk[n]+Δθk[n]

)
(my−1)sin

(
ϕk[n]+Δϕk[n]

)
,

· · · , e−bsin
(
θk[n]+Δθk[n]

)
(My−1)sin

(
ϕk[n]+Δϕk[n]

))
,

(8)

where b = j2πbfc

c . We note that ak[n] is a nonlinear function
with respect to Δθk[n] and Δϕk[n], which complicates the
robust resource allocation algorithm design. To tackle this
issue and since Δθk[n] and Δϕk[n] are generally small,
we approximate ak[n] by applying the first order Taylor series
expansion. In particular, for given θk[n] and ϕk[n], we have

ak[n] ≈ ak[n] +
∂ak[n]
∂θk[n]

∣∣∣
θk[n]=θk[n],ϕk[n]=ϕk[n]

Δθk[n]

+
∂ak[n]
∂ϕk[n]

∣∣∣
θk[n]=θk[n],ϕk[n]=ϕk[n]

Δϕk[n], (9)

where ak[n] ∈ CM×1 denotes the AAR estimate of user k
given by

ak[n] = a
(
θk[n], ϕk[n]

)∣∣
θk[n]=θk[n],ϕk[n]=ϕk[n]

. (10)

For notational convenience, we rewrite the AAR between the
UAV and user k in time slot n as

ak[n] = ak[n] + Dk[n]uk[n], (11)

where uk[n] Δ=
[
Δθk[n], Δϕk[n]

]T ∈ R2 and Dk[n] Δ=(
∂ak[n]
∂θk[n] ,

∂ak[n]
∂ϕk[n]

)
∈ CM×2. Besides, the AoD set Ωk can be

rewritten as

Ωk =
{
(θk[n], ϕk[n])

∣∣ uT
k [n]Euk[n] ≤ α2

}
, ∀k, (12)

where E =
(

e1 0
0 e2

)
� 0.

Remark 1: We note that the linearized AAR model in (11)
is employed since Δθk[n] and Δϕk[n] are small in practice
and to facilitate resource allocation design. In our simulations,
we adopt the nonlinear AAR model in (2) to evaluate the
proposed resource allocation algorithm.

C. Wind Speed Model

In practice, the UAV trajectory is influenced by wind [20].
In particular, the UAV ground speed3 is affected by horizontal
wind [36]. Without a careful design, the UAV is unable
to operate along the desired trajectory. According to [36],
the UAV ground speed in time slot n is given by the vector sum
of the 2-D horizontal UAV air speed, vu[n], and the horizontal
wind speed, vw [n], i.e., vu[n] + vw[n]. However, in practice,
it is difficult to accurately estimate the instantaneous wind
speed in each time slot due to the limited estimation accuracy
of wind sensors and the randomness of wind [37]. To capture

3Ground speed is the horizontal speed of an aircraft relative to the
ground [36].
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this effect, we adopt a deterministic model for the resulting
wind speed uncertainty [9]. The horizontal wind speed vw[n]
in time slot n is modeled as [38]:

vw[n] = vw[n] + Δvw [n], (13)

vw[n] ∈ Ξ Δ=
{
vw[n] ∈ R2 | ‖Δvw[n]‖ ≤ ΔV max

w

}
, (14)

where vw[n] and Δvw[n] are the wind speed estimate and the
wind speed uncertainty in time slot n, respectively. Moreover,
continuous set Ξ contains all possible wind speed uncertainties
with bounded maximum wind speed uncertainty magnitude
ΔV max

w .

D. User Location Model

In this paper, we assume that user devices are equipped with
global positioning system (GPS) modules to obtain informa-
tion regarding their own locations [39]. However, in general,
the user location information is imperfect due to the lim-
ited positioning accuracy of practical GPS modules, satellite
shadowing, and atmospheric impairments.4 The resulting user
location uncertainty should be taken into account for resource
allocation algorithm design. In particular, since we assume
that all users are on the ground, their z coordinates are set
to 0. Moreover, we assume that all users are stationary. Then,
the horizontal coordinates of user k are given by xk = xk +
Δxk and yk = yk+Δyk, where xk and yk are the user location
estimates available at the UAV, and Δxk and Δyk denote the
corresponding user location estimation errors. On the other
hand, exploiting onboard multi-sensor systems and advanced
positioning strategies, the positioning accuracy of UAVs can
be improved to centimeter level [40]. As a result, we assume
that the UAV perfectly knows its own location in each time
slot. In particular, the estimated horizontal coordinates and the
horizontal location estimation error of user k are defined as
r′k = (xk, yk)T and Δr′k = (Δxk, Δyk)T , respectively.
Then, the distance between the UAV and user k can be
rewritten as

‖r0[n] − rk‖ =
√∥∥r′0[n] − (r′k + Δr′k)

∥∥2 + H2
0 . (15)

Furthermore, we define set Ψk collecting the possible location
uncertainties of user k as follows:

Ψk
Δ=
{
r′k ∈ R2 | (Δr′k)T Δr′k ≤ D2

k

}
, ∀k ∈ K, (16)

where Dk is the bounded magnitude radius of the uncertainty
region, whose value depends on the positioning accuracy.

E. No-Fly Zone Model

In this paper, we take NFZs into account for trajectory
design [23]. In particular, we assume that there are J polygonal
NFZs within the UAV service area, and the j-th NFZ is
a polygon with Sj sides. Then, we model the polygonal
NFZs by applying analytic geometry theory. Specifically, each
polygonal NFZ is represented by the intersection of a finite

4The positioning errors of fourth-generation long-term evolution (4G LTE)
network devices are typically in the range between 10 and 50 meters,
depending on the adopted positioning protocol [39].

Fig. 3. A pentagonal no-fly zone composed of the intersection of five
halfspaces.

number of half-spaces, and each half-space is defined as the
solution of a set of affine inequalities, i.e.,

Dij =
{
d ∈ R2 | pT

ijd < qij , i ∈ Sj , j ∈ J
}

, (17)

where d are the 2-D coordinates of a horizontal plane with
normal vector pij ∈ R2 and offset qij ∈ R, cf. Figure 3.

Moreover, Sj
Δ= {1, · · · , Sj} and J Δ= {1, · · · , J} denote the

set of the sides of polygonal NFZ j and the set of polygonal
NFZs, respectively. Besides, pij and qij can be determined in
advance since the location and the size of the NFZs are set
by regulation and known to the public.

As a result, the UAV does not violate NFZ j in time slot n
if r′0[n] /∈ Dij , ∀i ∈ Sj . In other words, r′0[n] has to satisfy
at least one of the following Sj inequalities:

pT
ijr

′
0[n] ≥ qij , ∀i ∈ Sj . (18)

To facilitate the trajectory design, we define an indicator
function as follows [41]

Yij(r′0[n]) =

{
1, pT

ijr
′
0[n] ≥ qij

0, pT
ijr

′
0[n] < qij , ∀i, ∀j.

(19)

Therefore, the UAV does not trespass any NFZ in time slot n,
if the following equality holds

∧
j∈J

∨
i∈Sj

Yij(r′0[n]) = 1, ∀j. (20)

In particular, the UAV is not in NFZ j if for any i ∈ Sj ,
function Yij(r′0[n]) is equal to 1. Moreover, the UAV is able
to bypass all NFZs, if ∨

i∈Sj

Yij(r′0[n]) is equal to 1 for all

j ∈ J .

F. Aerodynamic Power Consumption

We assume that the cruising speed is constant during each
time slot [42]. According to the classic aerodynamic theory for
rotary-wing UAVs [43], the aerodynamic power consumption
of level flight in time slot n can be modeled as [44]

Paero[n] = Pinduced[n] + Pprofile[n] + Pparasite[n], (21)

where Pinduced[n], Pprofile[n], and Pparasite[n] denote the
induced power, profile power, and parasite power,5 respec-

5The induced power generates thrust by propeling air downwards. The
profile power overcomes the rotational drag encountered by rotating the
propeller blades. The parasite power resists the body drag [43], [45].
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Fig. 4. UAV aerodynamic power consumption (Watt) versus horizontal
velocity (m/s).

tively, and are given by [44, Eq. (7.9)]:

Pinduced[n] =
√

2Wuc2
1√

‖vu[n]‖2 +
√
‖vu[n]‖4 + 4c4

1

, (22)

Pprofile[n] = c2 V 3
T

[
1 + c3

(‖vu[n]‖
VT

)2]
, (23)

Pparasite[n] = c4 ‖vu[n]‖3
, (24)

respectively. Wu is defined as Wu = kikrmug0, where ki, kr,
mu, and g0 denote the induced-power factor [44], the thrust-to-
weight factor [45], the mass of the UAV, and the gravitational
acceleration, respectively. VT denotes the rotor tip speed and
c1, c2, c3, and c4 are UAV aerodynamic power consumption
parameters [44].

The aerodynamic power consumption of the UAV is a
function of the horizontal velocity, cf. Figure 4. For Figure 4,
we adopted the same parameter values as for the simulation
results in Section V, see Table I. From Figure 4, we observe
that, for rotary-wing UAVs, hovering is generally not the
most power-conserving state. The optimal UAV speed that
minimizes the total aerodynamic power consumption of the
UAV is referred to as the maximum endurance speed, see
Figure 4.

Remark 2: According to the theory of aerodynamics of
UAVs [19], wind has a two-fold impact on the UAV aerody-
namic power consumption. On the one hand, wind impacts the
UAV aerodynamic power consumption by affecting the UAV
ground speed. For UAV trajectory design in the presence of
wind, the UAV has to adjust its air speed in each time slot such
that the ground speed ensures a safe and power-efficient oper-
ation. As a result, the UAV aerodynamic power consumption
may significantly change due to the wind-induced changes of
UAV air speed, cf. Figure 10. On the other hand, wind also
influences the air density around the rotor blades which leads
to variations in the aerodynamic power consumption [19].
Yet, these power variations are relative small for moderate
wind speeds and the corresponding model seems intractable
for UAV trajectory and resource allocation algorithm design
[46], [47]. Hence, to obtain a tractable optimization problem,
in this paper, we assume that wind only affects the ground

speed. This approach is in line with existing literature, cf. [36],
[46], [48]. A more refined model capturing all wind-induced
effects on the UAV aerodynamic power consumption is an
interesting topic for future work.

G. Optimization Problem Formulation

In practice, the endurance of the UAVs is restricted by the
limited onboard battery capacity [49]. Hence, a power-efficient
resource allocation is of utmost importance for UAV-assisted
communication systems. Therefore, in this paper, we adopt
the minimization of the total power consumption as design
objective. Moreover, since the AoDs in (3) depend on the
UAV location, designing the UAV trajectory and beamforming
policy jointly for all NT time slots is intractable. Therefore,
in this paper, we develop a greedy policy and optimize the
trajectory and beamformers of the UAV for minimization of
the total power consumption in each time slot. Since the
displacement of the UAV in each time slot is relatively small,
we assume that the AoDs remain unchanged during one time
slot. Hence, the UAV trajectory and the beamforming policy
in time slot n are designed based on the AoDs at the end
of time slot n − 1. This procedure is repeated for time slots
n = 1, · · · , NT, and the whole UAV trajectory is obtained by
combining the respective time slot trajectories. The optimal
trajectory and the beamforming vector in time slot n are
obtained by solving the following optimization problem6:

minimize
wk ,r′0,vu

η
∑
k∈K

wH
k wk + Paero + M · Pcirc (25)

s.t. C1:

[∑
k∈K

wkwH
k

]
i,i

≤ Pi, ∀i,

C2: min
r′k ∈ Ψk,
uk ∈ Ωk

�

‖r′0−r′k‖2

2
+H2

0

∣∣aH
k wk

∣∣2
�

‖r′0−r′k‖2

2
+H2

0

∑
r∈K\{k}

∣∣aH
k wr

∣∣2 + σ2
nk

≥ Γreqk
, ∀k,

C3: ‖vu − vu[n − 1]‖ ≤ amaxδT ,

C4: min
vw∈Ξ

‖vu + vw‖ δT ≥ ‖r′0 − r′0[n − 1]‖ ,

C5: ‖vu‖ ≤ V max
u , C6:max

vw∈Ξ
‖vu + vw‖ ≤ V max

g ,

C7: ∧
j∈J

∨
i∈Sj

Yij(r′0) = 1, C8: ‖r′0‖2 ≤ Rp,

where η > 1 and Pcirc denote the power amplifier efficiency
and the circuit power consumption of the radio frequency (RF)
chain of one antenna element, respectively. Constraint C1 lim-
its the transmit power of the i-th antenna element Pi, whose
value is determined by the analog RF front-end. Γreqk

in
constraint C2 is the minimum SINR required by user k and
ensures that the QoS requirements of the users are met.7

Constraint C3 restricts the change of the UAV speed from one

6Since the optimization problem in (25) is solved for each time slot, for
convenience, we drop time slot index n for the optimization variables.

7Constraint C2 is equivalent to a per time slot throughput constraint. We note
that a constraint on the accumulated throughput can be satisfied by selecting an
appropriate throughput constraint for each time slot and solving the considered
optimization problem for each time slot.
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TABLE I

SYSTEM PARAMETERS ADOPTED IN SIMULATIONS

Fig. 5. Illustration of the key steps of the proposed algorithms. The red boxes and the blue boxes represent the key steps of the proposed optimal and
suboptimal schemes, respectively. The parallelogram shaped boxes, the square shaped boxes, and the curved shaped boxes indicate the considered optimization
problem, the key operations used for solving the considered optimization problem, and the obtained solutions, respectively.

time slot to the next, where amax denotes the maximum accel-
eration of the UAV which is limited by its engines. Constraint
C4 restricts the maximum displacement of the UAV in each
time slot in the presence of wind speed uncertainty. Constraint
C5 constrains the maximum UAV horizontal velocity V max

u .
V max

g in constraint C6 limits the maximum UAV speed for
safety reasons. Constraint C7 ensures that the UAV does not
pass through an NFZ. Rp in constraint C8 denotes the radius
of the circular service area. Since M · Pcirc is constant for a
given number of antenna elements, we omit it when solving
(25) in the following.

We note that problem (25) is a non-convex optimization
problem involving disjunctive programming [25] and semi-
infinite programming [50]. Such non-convex problems are
in general intractable. In particular, the non-convex objec-
tive function, the semi-infinite constraints C2, C4, and C6,
and the disjunctive constraint C7 are the main obstacles
for solving the considered trajectory and resource allocation
optimization problem. Yet, despite these challenges, we will
develop an algorithm for finding the optimal solution of (25)
by exploiting the unique properties of the problem in the
next section.

Remark 3: In this paper, we assume that the flight direction
of the UAV in each time slot can be estimated by the sensors
equipped at the UAV [40]. We note that small estimation errors
for the flight direction of the UAV can be incorporated into the
AoD uncertainty model and handled by the proposed robust
trajectory design and resource allocation algorithms.

Remark 4: We note that, in uncertain environments,
the proposed time slot-by-time slot algorithm design for

joint UAV trajectory design and resource allocation may be
preferable compared to a joint design across all time slots.
In particular, in practice, the location of the users and the wind
speed may vary over time. As a result, algorithms assuming
the system parameters are fixed for the entire flight duration
may not be able to satisfy the QoS requirement of moving
users or may lead to violations of safety regulations due to
outdated user location and wind speed information. In contrast,
the proposed algorithms do not suffer from the aforementioned
limitations since the system parameters can be adapted in each
time slot.

Remark 5: In practice, UAVs are controlled and operated
by ground UAV control stations [51]. In this paper,
we assume that the UAV control station constantly acquires
wind information from nearby weather stations and collects
location information of the UAV and ground users via
feedback channels. Moreover, at the beginning of each time
slot, the instantaneous CSI of the channels between the UAV
and the ground users is acquired via handshaking and is
transmitted to the UAV control station via feedback channels.
The per time slot UAV trajectory and beamforming policy
is computed at the UAV control station. Then, the obtained
solution is informed to the UAV via a control channel.

III. OPTIMAL SOLUTION OF THE

OPTIMIZATION PROBLEM

In this section, we develop an algorithm that finds a globally
optimal solution for optimization problem (25). In particular,
we first transform the semi-infinite constraints in (25) into
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linear matrix inequalities (LMIs). Then, we recast the dis-
junctive programming constraint into a mixed integer linear
programming constraint. Subsequently, we solve the optimiza-
tion problem optimally by employing monotonic optimization
theory and SDP relaxation. The key steps for finding the
optimal solution of the considered optimization problem are
illustrated in Figure 5, top part (red boxes).

A. Transformation of the Semi-Infinite Constraints

For the sake of notational simplicity, we define Wk =
wkwH

k , Ak = akaH
k , ∀k, and rewrite (25) in equivalent

form as

minimize
Wk∈H

NT ,r′0,vu

η
∑
k∈K

Tr(Wk) + Paero

s.t. C1:

[∑
k∈K

Tr(Wk)

]
i,i

≤ Pi, ∀i,

C2: min
r′k ∈ Ψk,
uk ∈ Ωk

�

‖r′0−r′k‖2
+H2

0

Tr(WkAk)∑
r∈K\{k}

�

‖r′0−r′
k‖2

+H2
0

Tr(WrAk) + σ2
nk

≥ Γreqk
,

C3-C8, C9:Wk � 0, ∀k, C10:Rank(Wk) ≤ 1, ∀k,

(26)

where Wk � 0, Wk ∈ HNT , and Rank(Wk ) ≤ 1 in
constraints C9 and C10 are imposed to ensure that Wk =
wkwH

k holds after optimization. Moreover, constraints C2,
C4, and C6 are intractable semi-infinite constraints, as vari-
ables r′k , uk, and vw are continuous in sets Ψk, Ωk, and
Ξ, respectively. To obtain a tractable optimization problem,
we transform constraints C2, C4, and C6 into LMIs. Specifi-
cally, constraint C2 is very challenging to handle, since the
left hand side term is a non-convex fractional term which
contains continuous variables r′k and uk. To facilitate the
transformation of the semi-infinite constraints, we first rewrite
constraint C2 as

C2: min
r′k ∈ Ψk,
uk ∈ Ωk

Tr(WkAk)∑
r∈K\{k}

Tr(WrAk) + ‖r′0−r′k‖2
+H2

0
� σ2

nk

≥ Γreqk
, ∀k. (27)

Then, we define a slack variable τk ∈ R to decouple variables
r′k and uk and rewrite C2 equivalently in terms of two
constraints C2a and C2b [52], [53] as follows:

C2a: min
uk∈Ωk

Tr(WkAk ) − Γreqk

∑
r∈K\{k}

Tr(WrAk )≥τk, ∀k,

(28)

C2b: τk ≥ max
r′k∈Ψk

Γreqk

σ2
nk

(‖r′0 − r′k‖
2 + H2

0 )
�

, ∀k. (29)

The two continuous variables r′k and uk are decoupled now.
Next, we take the square of both sides of the inequality
in constraint C4 and define a slack variable ζ ∈ R. Then,

constraint C4 can be equivalently rewritten as

C4a: ζ ≥ 1
δ2
T

‖r′0 − r′0[n − 1]‖2
, (30)

C4b: ‖vu + vw‖2 ≥ ζ, ∀vw ∈ Ξ. (31)

Similarly, we can rewrite constraint C6 as:

C6 : ‖vu + vw‖2 ≤ (V max
g )2, ∀vw ∈ Ξ. (32)

Now, we introduce a lemma for transforming constraints
C2a, C2b, C4b, and C6 into LMIs.

Lemma 1 (S-Procedure [54]:) Let a function fm(x), m ∈
{1, 2}, x ∈ CN×1, be defined as

fm(x) = xHBmx + 2Re
{
bH

mx
}

+ bm, (33)

where Bm ∈ HN , bm ∈ CN×1, and bm ∈ R1×1. Then,
the implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and only if
there exists a δ ≥ 0 such that

δ

[
B1 b1

bH
1 b1

]
−
[

B2 b2

bH
2 b2

]
� 0, (34)

provided that there exists a point x̂ such that fm(x̂) < 0.
Using Lemma 1, the following implication can be obtained:

uT
k Euk − α2 ≤ 0 ⇒ C2a holds if and only if there exist

ϑk ≥ 0 such that

C2a: SC2ak
(Wk , τk , ϑk)

=
[

ϑkE 0
0 −ϑkα2 − τk

]

+UH
k

⎡⎣Wk − Γreqk

∑
r∈K\{k}

Wr

⎤⎦Uk � 0, ∀k, (35)

holds, where Uk =
[

Dk ak

]
. Similarly, we apply

Lemma 1 to C2b, C4b, and C6 and obtain the respective
equivalent constraints which are shown at the top of this
page, where βk, γk, ι ≥ 0. We note that constraints C2b,
C4b, and C6 are still non-convex, due to the quadratic terms
‖r′0‖

2 and ‖vu‖2. For handling C2b, C4b, and C6, we define
slack variables �k ∈ R, ε ∈ R, and μ ∈ R and rewrite
constraints C2b, C4b, and C6 which are shown on the top of
this page, respectively. We note that constraints C2c, C4c, C4d,
and C6a are convex constraints, and constraints C2d and C6b
are monotonically increasing in �k and μ, respectively. For
convenience, we define set A to collect optimization variables
τk, ϑk, βk, γk, and ι.

B. Transformation of the Disjunctive Constraint

The disjunctive programming in constraint C7 is an obstacle
to solving problem (26). To overcome this obstacle, we define
auxiliary binary optimization variable lij ∈ {0, 1} and intro-
duce the following theorem.

Theorem 1: The disjunctive programming in constraint C7 is
equivalent to the following mixed integer linear program-
ming [55]:

pT
ijr

′
0 − qij + Glij ≥ 0, ∀i, ∀j, (43)
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if binary variable lij satisfies inequality
∑

i∈Sj

lij ≤ Sj − 1, and

G is a sufficiently large constant.
Proof: Please refer to Appendix A. �
Based on Theorem 1, we can rewrite constraint C7 as mixed

integer linear constraints:

C7a:pT
ijr

′
0 − qij + Glij ≥ 0, ∀i, ∀j, (44)

C7b:
∑
i∈Sj

lij ≤ Sj − 1, ∀j, C7c: lij ∈ {0, 1} , ∀i, ∀j. (45)

We note that constraint C7c is a binary constraint which
is difficult to handle. Hence, we further rewrite C7c in the
equivalent form as:

C7d:
∑
j∈J

∑
i∈Sj

(lij − l2ij) ≤ 0, C7e:0 ≤ lij ≤ 1, ∀i, ∀j. (46)

Now, the optimization variable lij is a continuous variable
between zero and one. Yet, we note that constraint C7d is
a non-convex and non-monotonic function. To tackle this
problem, we define a slack variable t ∈ R and rewrite
constraint C7d as:

C7f:
∑
j∈J

∑
i∈Sj

l2ij + t ≥ S, C7g:
∑
j∈J

∑
i∈Sj

lij + t ≤ S, (47)

where S is a constant and defined as S
Δ=
∑

j∈J
Sj . We note that

constraint C7f is monotonically increasing in t and constraint
C7g is a convex constraint.

C. Mathematical Preliminaries for
Monotonic Optimization

In this subsection, we introduce some mathematical pre-
liminaries [26], [56] required for monotonic optimization and

the derivation of the corresponding algorithm in the next two
subsections.

Definition 1 (Increasing Function): A function f : Rn
+ → R

is increasing if f(x) ≤ f(y) when 0 ≤ x ≤ y.
Definition 2 (Normal Set): A set G ∈ Rn

+ is normal if for
any point x ∈ G, all other points x′ such that 0 ≤ x′ ≤ x are
also in set G.

Proposition 1 [56]: The union and the intersection of normal
sets are still normal sets.

Definition 3 (Conormal Set): A set H ∈ Rn
+ is conormal if

x ∈ H and x′ ≥ x implies x′ ∈ H.
Definition 4 (Polyblock): A set P ∈ Rn

+ is called a polyblock
if it is the union of a finite number of boxes [0,x].

Proposition 2 [56]: Any polyblock is closed and normal.
The intersection of a finite number of polyblocks is a poly-
block.

Proposition 3 [56]: If vector variable x belongs to a
polyblock P , and f (x): Rn

+ → R is an increasing function of
x, then the maximum of f (x) over polyblock P must occur
at one vertex of P .

Definition 5 (Projection): Given any vector variable x ∈ Rn
+

and any nonempty normal set G ∈ Rn
+, πG(x) is a projection

of x on G if πG(x) = λx with λ = max {η | ηx ∈ G}.
Definition 6 (Upper Boundary): A point y ∈ Rn

+ is an
upper boundary point of a closed normal set G if G ∩{
x ∈ Rn

+ | x > y
}

= ∅.

D. Monotonic Optimization Framework

In this subsection, we develop an optimal algorithm for UAV
trajectory and resource allocation design based on monotonic
optimization theory [26].The proposed algorithm exploits the
monotonicity of the formulated problem and provides a sys-
tematic approach to finding the globally optimal solution
within a finite number of iterations. The performance achieved

C2b: SC2bk
(r′0, τk , βk) =

⎡⎣ (βk − 1)I2 r′0 − r′k

(r′0 − r′k)T −βkD2
k − ‖r′0‖

2 + 2(r′k)T r′0 − ‖r′k‖
2 − H2

0 +
�τk

Γreqk
σ2

nk

⎤⎦ � 0, ∀k, (36)

C4b: SC4bk
(vu, ζk , γk) =

[
(γk + 1)I2 vu + vw

(vu + vw)T −γk(ΔV max
w )2 + ‖vu‖2 + 2vT

u vw + ‖vw‖2 − ζk

]
� 0, ∀k, (37)

C6: SC6(vu, ι) =

[
(ι − 1)I2 −vu − vw

−(vu + vw)T −ι(ΔV max
w )2 − ‖vu‖2 − 2vT

u vw − ‖vw‖2 + (V max
g )2

]
� 0, (38)

C2c: SC2ck
(r′0, τk , βk, �k) =

⎡⎣ (βk − 1)I2 r′0 − r′k

(r′0 − r′k)T −βkD2
k − R2

p + �k + 2(r′k)T r′0 − ‖r′k‖
2 − H2

0 +
�τk

Γreqk
σ2

nk

⎤⎦ � 0, ∀k, (39)

C4c: SC3ck
(vu, ζk , γk, ε) =

[
(γk + 1)I2 vu + vw

(vu + vw)T −γk(ΔV max
w )2 + ε + 2vT

u vw + ‖vw‖2 − ζk

]
� 0, ∀k, (40)

C6a: S�C6a
(vu, ι, μ) =

[
(ι − 1)I2 −vu − vw

−(vu + vw)T −ι(ΔV max
w )2 − (V max

u )2 + μ − 2vT
u vw − ‖vw‖2 + (V max

g )2

]
� 0, (41)

C2d: R2
p ≤ �k + (r′0)

T r′0, ∀k, C4d: ε ≥ vT
u vu, C6b: (V max

u )2 ≤ μ + vT
u vu, (42)
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by the optimal algorithm can serve as a performance upper
bound for any low-complexity suboptimal algorithm. To facil-
itate the application of monotonic optimization, we trans-
form (26) into the canonical form of a monotonic optimization
problem [26]. First, to transform the objective function into
the maximization of a monotonically increasing function,
we define an auxiliary variable z ∈ R representing the
difference between the actual total UAV power consumption
and the maximum total UAV power consumption. In particular,
z satisfies the following constraint:

C11: z ≤ P̂ −
(∑

k∈K
Tr
(
Wk

)
+
√

2Wuc2
1û

+c2 V 3
T

[
1 + c3

(‖vu‖
VT

)2]
+ c4 ‖vu‖3

)
, (48)

where û ∈ R is a slack variable which meets the following
constraint

C12: û ≥ 1√
‖vu‖2 +

√
‖vu‖4 + 4c4

1

. (49)

Moreover, P̂ is an upper bound on the total UAV power
consumption and is defined as P̂

Δ=
∑

i∈M
Pi+Wuc1+c2 V 3

T

[
1+

c3

(
V max

u

VT

)2]
+c4(V max

u )3, where V max
u is the maximum UAV

speed. As C11 and C12 are monotonically increasing functions
in z and û, respectively, (26) can be equivalently rewritten as
the following monotonic optimization problem:

maximize
Wk ,r′0,vu,lij ,
A,�k,ε,μ,t,z,�u

z − P̂ s.t.(�k, ε, μ, t, z, û) ∈ F , (50)

where set F = G ∩H is the intersection of normal set G and
conormal set H [26], and G and H are given by

G Δ= {(t, z) | (t, z) ∈ U} , (51)

H Δ= {(�k, ε, μ, t, û) | (�k, ε, μ, t, û) ∈ V} , (52)

where feasible set U is spanned by constraints C1, C2a,
C2c, C3, C4a, C4c, C5, C6a, C7a, C7b, C7e, C7g, C8-C10,

and C11, and feasible set V is spanned by constraints C2d,
C4d, C6b, C7f, and C12. Since P̂ is a constant and does
not affect the optimal solution of the considered problem,
we omit it in the following for notational simplicity. We note
that problem (50) is in the canonical form of a monotonic
optimization problem.

E. Optimal Algorithm Design

In this section, we design an iterative algorithm based on
polyblock outer approximation [26] to solve the considered
problem. Due to the monotonicity of the objective function,
the optimal solution of (50) is on the upper boundary of
feasible set F . In general, the upper boundary of feasible set
F is not known in advance. Hence, we approach the boundary
by iteratively pruning a polyblock P , simultaneously ensuring
P always contains feasible set F . In particular, in time slot
n, based on vertex ν(1), we initially construct a polyblock
P(1) that includes feasible set F . Moreover, the vertex ν(1)

is defined as ν(1) Δ=
(
�

(1)
k , ε(1), μ(1), t(1), z(1), û(1)

)
and the

vertex set of P(1) is denoted as T (1) =
{
ν(1)

}
. Based on

vertex ν(1), we generate K + 5 new vertices in the vertex set
T̂ (1) =

{
ν̂

(1)
1 , · · · , ν̂

(1)
Q

}
. Specifically, we calculate ν̂

(1)
i =

ν(1) − (ν(1)
i − πi(ν(1)))ei, ∀i ∈ {1, · · · , K + 5}, where ν

(1)
i

and πi(ν(1)) are the i-th elements of ν(1) and π(ν(1)) in
time slot n, respectively. Moreover, π(ν(1)) ∈ RK+5 denotes
the projection of ν(1) onto set G, and ei is a unit vector
with the i-th element equal to 1. Then, we shrink P(1) by
replacing ν(1) by K + 5 new vertices in T̂ (1) and obtain
a new polyblock P(2) which still satisfies P(2) ⊃ F . The
vertex set of P(2) is updated by setting T (2) =

(
T (1) \{

ν(1)
} )

∪T̂ (1). Subsequently, for each vertex in set T (2)∩H,
we calculate the projections onto the upper boundary of G.
Then, the vertex whose projection maximizes the objective
function of problem (50) is chosen as the optimal vertex ν(2)

in T (2) ∩ H, i.e., ν(2) = arg max
ν∈T (2)∩H

{z}. The aforementioned

procedure is applied repeatedly to shrink P(2) based on vertex
ν(2). As a result, a smaller polyblock is constructed in each
iteration, leading to P(1) ⊃ P(2) ⊃ · · · ⊃ F . The algorithm

Find {Wk, r′0,vu, lij ,A}

s.t. C2c:SC2ck
(r′0, τk , βk, �k) =

⎡⎣ (βk − 1)I2 r′0 − r′k
(r′0 − r′k)T −βkD2

k − R2
p + λ̂(�k)(m) + 2(r′k)T r′0 + ‖r′0‖

2 − H2
0 +

�τk

Γreqk
σ2

nk

⎤⎦ � 0,

C4c:SC4ck
(vu, ζk , γk, ε) =

[
(γk + 1)I2 vu + vw

(vu + vw)T −γk(V max
w )2 + λ̂(ε)(m) + 2vT

u vw + ‖vw‖2 − ζk

]
� 0, ∀k,

C6a:SC6a(vu, ι, μ) =
[

(ι − 1)I2 −vu − vw

−(vu + vw)T −ι(V max
w )2 − (V max

w )2 + λ̂(μ)(m) − 2vT
u vw − ‖vw‖2 + (V max

g )2

]
� 0,

C7g:
∑
j∈J

∑
i∈Sj

lij + λ̂(t)(m) ≤ S,

C11:λ̂(z)(m) +
∑
k∈K

Tr(Wk) +
√

2Wuc2
1λ̂(û)(m) + c2 V 3

T

[
1 + c3

(‖vu‖
VT

)2]
+ c4 ‖vu‖3 ≤ P̂ ,

C1, C2a, C3, C4a, C5, C7a, C7b, C7e, C8-C10. (53)
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Algorithm 1 Optimal Polyblock Approximation Based
Algorithm

1: Set the initial UAV location r′0[0] = (0, 0) and initial
UAV speed vu[0] = (0, 0). Initialize polyblock P(1)[n]
with vertex set T (1)[n] =

{
ν(1)[n]

}
and vertex ν(1)[n] =(

�
(1)
k [n], ε(1)[n], μ(1)[n], t(1)[n], z(1)[n], û(1)[n]

)
as fol-

lows: (�k[n])(1) = 4R2
p, (ε[n])(1) = (V max

u )2, (μ[n])(1) =
(V max

u )2, (t[n])(1) = S, (z[n])(1) = P̂ , and (û[n])(1) =
1/(

√
2c1), ∀k ∈ K. Set the error tolerance 0 ≤ εPOA � 1

and the maximum number of iterations MPOA.
2: Set time slot index n = 1 and iteration index m = 1.
3: repeat
4: Calculate the AoDs via (3) based on the current location

information of the UAV r′0[n − 1]
5: repeat
6: Calculate the projection of vertex ν(m)[n] onto set

G[n], i.e., π(ν(m)[n]), with Algorithm 2.
7: Generate K + 5 new vertices T̂ (m)[n] ={

ν̂
(m)
1 [n], · · · , ν̂

(m)
K+5[n]

}
, where ν̂

(m)
i [n] = ν(m)[n]−(

ν
(1)
i [n] − πi(ν(m)[n])

)
ei, ∀i ∈ {1, · · · , K + 5}.

8: Construct a smaller polyblock P(m+1)[n] with new
vertex set T (m+1)[n] =

(
T (m)[n]−ν(m)[n]

)
∪T̂ (m)[n].

9: Find ν(m+1)[n] as that vertex of T (m+1)[n] ∩ H[n]
whose projection maximizes the objective
function of the problem, i.e., ν(m+1)[n] =

arg max
ν[n]∈T (m+1)[n]∩H[n]

{z[n]}.

10: Set m = m + 1.

11: until ‖ν(m)[n]−π(ν(m)[n])‖
‖ν(m)[n]‖ ≤ εPOA

12: Store the optimal solution ν∗[n].
13: Set n = n + 1
14: until n > NT

terminates if
‖ν(m)−π(ν(m))‖

‖ν(m)‖ ≤ εPOA or index m ≥ MPOA,

where the error tolerance constant εPOA > 0 specifies the
accuracy of the approximation and the maximum number
of iterations MPOA guarantees that the algorithm terminates
in finite time. The proposed polyblock outer approximation
algorithm is summarized in Algorithm 1.8

We note that the projection of vertex ν(m) onto the upper
boundary of set G, i.e., π(ν(m)), is required in each iteration
of Algorithm 1. In particular, in the m-th iteration of the n-th
time slot, the projection of the vertex ν(m) onto set G is given
by π(ν(m)) = λ̂ν(m). Moreover, the projection parameter λ̂
is obtained as λ̂ = max

{
α̂ | α̂ν(m) ∈ G

}
where λ̂ ∈ [0, 1].

Hence, λ̂ can be obtained by employing the bisection search
method [26]. Specifically, in the m-th iteration, for a given
projection parameter λ̂ and vertex ν(m), we have λ̂ν(m) ∈ G
if the problem in (53) is feasible, where (53) is shown at the
bottom of the previous page. We note that feasible set G is

8According to [56], the proposed polyblock outer approximation algorithm
is guaranteed to converge to the globally optimal solution of the monotonic
optimization problem in (50). The details of the convergence proof can be
found in [56, Section 5].

Algorithm 2 Bisection Projection Search Algorithm
1: Initialize λmin = 0, λmax = 1, and set error tolerance

0 < δBS � 1.
2: repeat
3: Let λ̂[n] = (λmin + λmax)/2.
4: Check the feasibility of λ̂[n] by solving (53), i.e., whether

λ̂[n]ν(m)[n] ∈ G[n]. If feasible, λmin = λ̂[n]; else
λmax = λ̂[n]

5: until λmax − λmin < δBS.
6: Obtain λ̂[n] = λmin and the projection of

vertex ν(m)[n] onto set G[n], i.e., π(ν(m)[n]) =
λ̂[n]ν(m)[n]. The corresponding optimization variables
(Wk[n], r′0[n],vu[n], τ [n], ζ[n], ϑ[n], β[n], γ[n], ι[n], lij [n])
are obtained by solving (53) for λ̂[n] = λmin.

spanned by the constraints of (53). The proposed projection
bisection search algorithm is summarized in Algorithm 2.
We note that problem (53) is non-convex due to rank-one con-
straint C10. To tackle this problem, we employ SDP relaxation
by removing constraint C10 from the problem formulation.
Then, (53) is a convex problem and can be solved efficiently
by standard convex optimization solvers such as CVX [57].
In addition, the tightness of the SDP relaxation of optimization
problem (53) is revealed in the following theorem.

Theorem 2: If Γreqk
> 0, a rank-one beamforming matrix

Wk can always be obtained.
Proof: Problem (53) is similar to [52, Problem (46)] and

the proof of Theorem 2 closely follows [52, Appendix B].
Hence, we omit the details of the proof due to space
constraints. �

The globally optimal UAV trajectory and beamforming
policy of the considered system can be obtained by
Algorithm 1. However, the computational complexity of
Algorithm 1 increases exponentially with the number of users
which is prohibitive for real-time operation of UAV-based
communication systems. In order to strike a balance between
complexity and optimality, in the next section, we propose a
suboptimal scheme which finds a locally optimal solution with
low computational complexity. Nevertheless, Algorithm 1
provides a valuable benchmark for any suboptimal
design.

Remark 6: In this paper, as is commonly done in the liter-
ature [58], [59], we assume that the considered optimization
problem is feasible for trajectory and resource allocation
algorithm design. In practice, the feasibility of the problem
depends on the channel condition and the QoS requirements
of the users. If the problem is infeasible, user schedul-
ing can be performed at the upper layers to temporarily
exclude some user from being served to make the problem
feasible.

IV. SUBOPTIMAL SOLUTION OF THE

OPTIMIZATION PROBLEM

In this section, we propose a suboptimal algorithm based
on SCA to strike a balance between computational complexity
and optimality, see Figure 5, bottom part (blue boxes). To start
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with, we rewrite problem (26) as:

minimize
Wk,r′0,vu,
lij ,A,�u,g

η
∑
k∈K

Tr(Wk) + g

s.t. C1, C2a, C2b, C3, C4a, C4b, C5, C6,

C7a, C7b, C7d, C7e, C8-C10,

C12:û ≥ 1√
‖vu‖2 +

√
‖vu‖4 + 4c4

1

,

C13:g ≥
√

2Wuc2
1û+c2 V 3

T

[
1+c3

(‖vu‖
VT

)2]
+c4 ‖vu‖3

,

(54)

where g ∈ R is an auxiliary variable. We note that (54) is a
non-convex problem due to non-convex constraints C2b, C4b,
C6, C7d, C10, and C12. Specifically, constraints C2b, C4b,
and C6 are non-convex due to the quadratic terms ‖r′0‖

2 and
‖vu‖2. For handling this, we construct a global underestimator
[60] of ‖r′0‖

2 at point (x(m)
0 , y

(m)
0 ) to approximate ‖r′0‖

2.
In particular, we rewrite constraint C2b as C̃2b which is shown
at the bottom of this page in (55), where c̃1 is a linear function
of (x0, y0) defined as:

c̃1
Δ= 2x0x

(m)
0 + 2y0y

(m)
0 − (x(m)

0 )2 − (y(m)
0 )2. (58)

Similarly, for point
(
(vx

u)(m), (vy
u)(m)

)
, constraints C4b and

C6 can be rewritten as C̃4b and C̃6 which are shown at the
bottom of this page in (56) and (57), respectively, where c̃2 is
a global underestimator of ‖vu‖2 at point

(
(vx

u)(m), (vy
u)(m)

)
defined as:

c̃2
Δ= 2(vx

u)(m)vx
u + 2(vy

u)(m)vy
u −

[
(vx

u)(m)
]2 − [

(vy
u)(m)

]2
.(59)

We note that constraints C̃2b, C̃4b, and C̃6 are convex.
However, non-convex constraint C7d in problem (54) is still
an obstacle for the design of a computationally efficient
algorithm. To resolve this issue, we introduce the following
theorem:

Theorem 3: The optimization problem in (54) can be
equivalently recast as follows

minimize
Wk,r′0,vu,
lij ,A,�u,g

∑
k∈K

Tr(Wk) + g + χ
∑
j∈J

∑
i∈Sj

(
lij − l2ij

)
s.t. C1, C2a, C̃2b, C3, C4a, C̃4b, C5, C̃6,

C7a, C7b, C7e, C8-C10, C12, C13, (60)

if χ is a sufficiently large constant that penalizes the objective
function for any lij not equal to 0 or 1.

Proof: Please refer to Appendix B. �

The remaining non-convexity of problem (60) is due to the
objective function and constraints C10 and C12. In particular,
to tackle the non-convexity of constraint C12, we rewrite it in
equivalent form as follows:

C12a:û ≥ 1
α̃

, C12b:(α̃)2 ≤ β̃ +
√

γ̃, (61)

C12c:β̃ ≤ ‖vu‖2
, C12d:γ̃ ≤ (β̃)2 + 4c4

1, (62)

C12e:α̃, β̃, γ̃ ≥ 0, (63)

where α̃, β̃, and γ̃ ∈ R are auxiliary optimization variables.
We note that constraints C12c and C12d are still non-convex.
However, the objective function and the constraint functions
in C12c and C12d are differences of convex functions. Hence,
problem (60) is a difference of convex programming problem
[60]. We can obtain a locally optimal solution by employing
SCA [28]. In particular, considering the objective function, for
any point l

(m)
ij , we have

l2ij ≥ 2lijl
(m)
ij − (l(m)

ij )2, (64)

where the right hand side of (64) is a global underestimator
of l2ij . Similarly, we can construct global underestimators for
constraints C12c and C12d as follows:

C̃12c: β̃2[(vx
u)(m)vx

u + (vy
u)(m)vy

u]

−
[
(vx

u)(m)
]2 − [

(vy
u)(m)

]2 ≤ 0, (65)

C̃12d: γ̃ − 2β̃(m)β̃ + (β̃(m))2 ≤ 4c4
1. (66)

To simplify the notation, we further define Υ̃,
Λ̃, Υ̃(m), and Λ̃(m) to collect {vu, r′0, lij , β̃, κ},
{Wk,A, û, g, ς, μ, λ}, {v(m)

u , (r′0)
(m), l

(m)
ij , β̃(m), κ(m)}, and

{W(m)
k ,A(m), û(m), g(m), ς(m), μ(m), λ(m)}, respectively.

Then, we can obtain an upper bound for (60) by solving the
following convex optimization problem:

minimize
W,r′,v,A,�u,
g,κ,ς,μ,λ

∑
k∈K

Tr(Wk) + g

+ χ
∑
j∈J

∑
i∈Sj

(
lij − 2lijl

(m)
ij + (l(m)

ij )2
)

s.t. C1, C2a, C̃2b, C3, C4a, C̃4b, C5, C̃6, C7a, C7b,

C7e, C8-C10, C12a, C12b, C̃12c, C̃12d, C12e. (67)

In problem (67), the remaining non-convex constraint is
rank-one constraint C10. Similar to the optimal algorithm,
we apply SDP relaxation to problem (67) by removing con-
straint C10, and the tightness of the SDP relaxation can be
proved similar to Theorem 2. Then, we employ the iterative
algorithm summarized in Algorithm 3 to tighten the obtained

C̃2b:S�C2bk
(r′0, τk , βk) =

⎡⎣ (βk − 1)I2 r′0 − r′k
(r′0 − r′k)T −βkD2

k − c̃1 + 2(r′k)T r′0 − ‖r′k‖
2 − H2

0 +
�τk

Γreqk
σ2

nk

⎤⎦ � 0, ∀k, (55)

C̃4b:S�C4bk
(vu, ζk , γk) =

[
(γk + 1)I2 vu + vw

(vu + vw)T −γk(V max
w )2 + c̃2 + 2vT

u vw + ‖vw‖2 − ζk

]
� 0, ∀k, (56)

C̃6:S�C6
(vu, ι) =

[
(ι − 1)I2 −vu − vw

−(vu + vw)T −ι(V max
w )2 − c̃2 − 2vT

u vw − ‖vw‖2 + (V max
g )2

]
� 0, (57)

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on July 07,2022 at 09:58:21 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: MULTIUSER MISO UAV COMMUNICATIONS IN UNCERTAIN ENVIRONMENTS WITH NO-FLY ZONES 3165

Algorithm 3 Suboptimal Successive Convex Approximation
Based Algorithm

1: Set the initial UAV location r′0[0] = (0, 0) and UAV speed
vu[0] = (0, 0). Set the initial point Υ̃(1) and error tolerance
εSCA.

2: Set time slot n = 1 and iteration index m = 1
3: repeat
4: Calculate the AoDs via (3) based on the current location

information of the UAV r′0[n − 1]
5: repeat
6: For given Υ̃(m)[n], solve the convex problem in (67)

and store the intermediate solution Υ̃[n] and Λ̃[n]
7: Set m = m + 1 and Υ̃(m)[n] = Υ̃[n]
8: until ‖�Υ(m)[n]−�Υ(m−1)[n]‖

‖�Υ(m−1)[n]‖ ≤ εSCA

9: Store the UAV trajectory and resource allocation policy
Υ̃∗[n] = Υ̃(m)[n] and Λ̃∗[n] = Λ̃(m)[n] for time slot n

10: Set n = n + 1
11: until n > NT

upper bound. In each iteration, after dropping C10, the convex
problem (67) can be solved efficiently by standard convex
program solvers such as CVX [57]. The proposed suboptimal
iterative algorithm converges to a locally optimal solution
of (54) in polynomial time [28].

The computational complexity of the proposed suboptimal
algorithm with respect to the numbers of users, K , and the
total number of transmit antennas at the UAV, M , is given
by9 [59], [61]

O
((

(M +K)M3+(M +K)2M2+(M +K)3
)
Ti

√
M log(εSCA)

)
(68)

for a given error tolerance εSCA, where O(·) is the big-O
notation and Ti is the required number of iterations. We note
that algorithms with polynomial time computational complex-
ity are considered to be fast algorithms in the literature and
are desirable for real-time implementation [41, Chapter 34].

Remark 7: In this paper, to make the resource allocation
design tractable, we design the beamforming vectors based
on the linearized AAR model in (11). This approximation
may lead to a violation of the original QoS constraint C2 for
the actual nonlinear AAR model in (2). To circumvent this
problem, we solve (25) for a more stringent minimum SINR
requirement, i.e., Γreqk

+ γ, where γ > 0 is a small positive
constant, which is chosen such that C2 is fulfilled also for the
nonlinear AAR model.

V. SIMULATION RESULTS

In this section, the performance of the proposed resource
allocation scheme is investigated via simulations. Specifically,
there are K users which are uniformly and randomly distrib-
uted within a single cell of radius 600 meters. We assume

9According to [61, Theorem. 3.12], the computational complexity of an SDP
problem with m SDP constraints, where each constraint contains an n × n
positive semidefinite matrix, is given by O�

mn3 + m2n2 + m3
�
. For the

problem at hand, we have m = M + K and n = M .

that the K users are located within Dk = 20 meters from
their respective estimated locations. Moreover, we take into
account the RF chain circuit power consumption Pcirc when
calculating the total UAV power consumption. For ease of
presentation, in the sequel, we define the maximum normalized
estimation error of the AoD between the UAV and user k as
ρk = α√

(θk)2+(ϕk)2
, where ρi = ρj , ∀i, j ∈ K. Similarly,

we define the maximum normalized wind speed uncertainty
in time slot n as ρw = ΔV max

w

‖vw‖ . Unless otherwise specified,
we set ρk = 0.1, ∀k ∈ K, and ρw = 0.2. Besides,
in order to investigate the impact of wind, we assume that
the magnitude of the wind speed estimate |vw| is 3 m/s
for all time slots. To evaluate the performance, we employ
the nonlinear AAR model in (2). We choose γ = 0.3 dB
for all results shown, which ensures that the desired SINR
Γreqk

is achieved for the proposed schemes in all considered
cases. Furthermore, to study the impact of polygonal NFZs,
we consider a scenario with NFZ and a scenario without
NFZ. In particular, for the scenario with NFZs, we assume
that there are several polygonal NFZs randomly distributed
within the cell. In addition, we adopt the total UAV power
consumption as the performance metric, which is calculated

by

�NT
n=1

(
η
�

k∈K
wH

k wk+Paero

)
NT

+M ·Pcirc. The adopted parameter
values are listed in Table I.

We also consider two baseline schemes for comparison.
For baseline scheme 1, we jointly optimize the beamformer
and the 2-D positioning of the UAV for minimization of
the UAV transmit power taking into account transmit power
constraint C1, QoS constraint C2, and NFZ constraint
C7. In this case, the UAV hovers at the obtained optimal
position and employs the optimal beamforming policy. For
baseline scheme 2, the UAV hovers at the initial point
(0, 0) and employs maximum ratio transmission (MRT) for
beamforming, i.e., the beamforming vector is set as wk =√

pkhk ‖hk‖−1, where pk is the power allocated to the k-th
user. We optimize pk to satisfy the QoS requirements of the
users. In addition, since for most channel realizations baseline
scheme 2 cannot simultaneously fulfill the per-antenna power
constraint and the QoS requirements of all users, we omit con-
straint C1 for baseline scheme 2 to obtain feasible solutions.

A. UAV Trajectory

Figure 6 and Figure 7 depict the 2-D trajectory of the
UAV in the horizontal plane for different resource allocation
schemes. In Figure 6, we show the trajectories of the proposed
optimal and suboptimal schemes and the baseline schemes in
the absence of wind and NFZs. In particular, the proposed opti-
mal and suboptimal schemes pursue similar aerial trajectories
where the UAV first moves towards the centroid of the region
spanned by the majority of the users which facilitates power
efficient data transmission. Then, the UAV adopts a circling
path around the centroid to reduce the aerodynamic power
consumption. This is due to the fact that for rotary-wing UAVs,
cruising flight generally consumes less power than hovering
flight, cf. Figure 4. For baseline scheme 1, the UAV hovers
at the centroid point and satisfies the QoS requirements of
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Fig. 6. Trajectory in the horizontal plane for a time horizon of T = 10
minutes for different resource allocation schemes in the absence of wind
and NFZs.

Fig. 7. Trajectory in the horizontal plane for a time horizon of T = 10
minutes for different resource allocation schemes in the presence of wind and
three NFZs.

all users with an optimized beamforming policy. For baseline
scheme 2, the UAV remains stationary at the initial point (0, 0)
during the whole time horizon.

In Figure 7, we illustrate the trajectories of the proposed
optimal and suboptimal schemes and the baseline schemes in
the presence of wind and three polygonal NFZs. The direction
of the wind speed estimate is 110◦ clockwise from north.
As can be seen from Figure 7, the addition of wind and
three polygonal NFZs changes the trajectory of the UAV.
Specifically, for the proposed optimal and suboptimal schemes,
the UAV first detours to avoid flying over the pentagon shaped
NFZ and then adapts its trajectory by cruising around the
rectangular NFZ. In fact, in order to save transmit power,
the UAV prefers to fly as close as possible to the majority
of the users. Yet, due to the wind speed uncertainty, the UAV
has to keep a small safe distance from the boundary of the
rectangular shaped NFZ, such that the trajectory does not cross
the boundary of the NFZ. For baseline scheme 1, the UAV
hovers right outside the rectangular NFZ. In fact, this is a
compromise between power-efficient transmission and safety
requirements. Moreover, for both baseline schemes, the UAV

Fig. 8. 2-D velocity (m/s) versus time (s) in horizontal plane for a time
horizon T = 4 minutes and different resource allocation schemes in the
presence of wind speed uncertainty and NFZs.

Fig. 9. Upper-half figure: UAV aerodynamic power consumption (W) versus
time for different resource allocation schemes; lower-half figure: UAV trans-
mission power consumption (W) versus time for different resource allocation
schemes.

slightly moves around the desired hovering point due to the
wind speed uncertainty. Besides, we also show the trajectory of
a non-robust scheme in Figure 7. In particular, for non-robust
scheme 1, an optimization problem similar to (25) is for-
mulated and solved by employing the proposed optimization
algorithm without taking into account the wind and the NFZs.
Compared to the trajectory of the proposed optimal scheme,
for non-robust scheme 1, the actual trajectory is significantly
altered. In particular, due to the wind, the ground speed varies
over time and cannot be fully controlled which leads to a
spiral trajectory. Furthermore, the UAV flies over the trapezoid
shaped NFZ which violates the safety requirements. In other
words, it is impossible to guarantee safety and reliable UAV-
assisted communication if the wind speed and the NFZs are
not properly taken into account for UAV trajectory design.

B. UAV Velocity, Aerodynamic Power,
and Transmit Power versus Time

In Figure 8, we study the horizontal velocity of the UAV
during a period of T = 4 minutes for different resource allo-
cation schemes and different scenarios. As can be observed,
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for the the scenario without NFZs and wind, the UAV flies
at a horizontal speed of 8 m/s during the entire period for
both the proposed optimal and suboptimal schemes. In fact,
the UAV prefers a speed of 8 m/s rather than full speed, since
there is no restriction on the total time and cruising the UAV at
|vu| = 8 m/s minimizes the aerodynamic power consumption
of the UAV, cf. Figure 4. For the baseline schemes, the UAV
hovers at the desired position and the initial point during the
entire time horizon, respectively, cf. Figure 6. On the other
hand, for the scenario with NFZs and wind, for the proposed
optimal and suboptimal schemes, the UAV again starts with
a speed of 8 m/s. Then, the UAV has to slightly increases
its speed to compensate the negative impact of the wind. For
the baseline schemes, the UAV operates with speeds around
3 m/s to compensate the wind speed such that it remains
static at the desired position. Besides, in Figure 8, we also
depict the ground speed of the UAV for the proposed optimal
scheme in the presence of wind and NFZs. In particular, it can
be observed that the ground speed changes periodically. This
is due to the fact that the UAV circles around the rectangular
shaped NFZ.

In Figure 9, we show the aerodynamic and transmit power
consumptions of the UAV during a period of T = 4 minutes
for different resource allocation schemes in the presence of
NFZs and wind. In particular, it can be observed that the
aerodynamic power consumptions for the proposed optimal
and suboptimal schemes and the baseline schemes remain
unchanged over the whole considered time horizon. This is
due to the fact that, for these schemes, the UAVs either
fly with a uniform speed or remain hovering as a result of
the respective optimization. On the other hand, the transmit
power consumptions for the proposed optimal and suboptimal
schemes decrease with time. This is due to the fact that the
UAV first flies towards the centroid of the region spanned
by the majority of the users which facilitates power efficient
data transmission. Meanwhile, the UAV decreases its transmit
power while approaching the centroid to maintain the min-
imum required SINR per user. As for baseline scheme 1,
the UAV hovers at the optimal position and employs an
efficient beamforming policy which entails almost the same
transmit power consumption as the proposed optimal and sub-
optimal schemes. For baseline scheme 2, the UAV transmitter
cannot fully exploit the degrees of freedom (DoFs) available
for resource allocation since the beamforming vector wk is
partially fixed. Hence, a higher transmit power is required to
the QoS constraints of the ground users.

C. Average Total UAV Power Consumption
Versus Wind Speed Estimate

In Figure 10, we study the average total UAV power
consumption versus wind speed estimate |vw| for different
resource allocation schemes and different maximum
normalized wind speed uncertainties ρw in the presence
of three NFZs. As can be observed, when |vw| ≤ 9 m/s,
the average total UAV power consumption of the proposed
optimal and suboptimal schemes slightly increases with |vw|.
This is due to the fact that for wind speed estimates of less

Fig. 10. Average total UAV power consumption (Watt) versus wind speed
estimate |vw| for different resource allocation schemes in the presence of
wind speed uncertainty and NFZs.

than 9 m/s, a UAV with a speed of 8 m/s, which is preferable
with respect to its aerodynamic power consumption, can
always adjust its air speed direction such that the desired
trajectory can be followed. In contrast, when |vw| > 9 m/s,
for safety reason, the UAV has to decrease its speed such
that the UAV ground speed will not exceed the maximum
ground speed V max

g = 18 m/s. This leads to a substantially
higher aerodynamic power consumption, cf. Figure 4. On the
other hand, for the two baseline schemes, as |vw| increases,
the total power consumption first dramatically decreases and
then rapidly increases. In particular, when |vw| increases
from 0 to 8 m/s, the UAV has to speed up to counteract the
wind speed and maintain hovering at the desired position.
According to Figure 4, this is beneficial for the consumed
aerodynamic power. As |vw| further increases, a higher
speed and thus, a higher aerodynamic power consumption
is required for hovering. Furthermore, as can be observed,
for wind speed estimates of less than 6 m/s, the proposed
optimal and suboptimal schemes achieve substantial power
savings compared to the two baseline schemes. In fact, for the
proposed optimal and suboptimal schemes, trajectory design
introduces extra DoFs, which provides substantial power
savings over the baseline schemes with their stationary UAVs.

D. Average Total UAV Power Consumption Versus
Number of Transmit Antennas

In Figure 11, we study the average total UAV power con-
sumption versus the number of antennas equipped at the UAV,
M , for different resource allocation schemes in the presence
of wind speed uncertainty and three NFZs. In addition to
baseline schemes 1 and 2, we consider a further baseline
scheme in this subsection. In particular, for baseline scheme 3,
the UAV orbits around the origin (0, 0) with uniform speed and
employs zero-forcing (ZF) beamforming such that multiuser
interference (MUI) is avoided at the users. Specifically, based
on the estimated AoD, the direction of beamforming vector
wk for desired user k is fixed and lies in the null space
spanned by all the other users’ channels. Then, we jointly
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Fig. 11. Average total UAV power consumption (Watt) versus number of
antennas at the UAV, M , for different resource allocation schemes in the
presence of wind speed uncertainty and NFZs.

optimize the speed of the UAV and the power allocated to
wk for minimization of the total UAV power consumption
subject to transmit power constraint C1, QoS constraint C2,
and maximum speed constraints C5 and C6 as in (25). As can
be observed, for the proposed schemes and baseline schemes 1,
2, and 3, the total UAV power consumption decreases as the
number of transmit antennas increases. This is due to the
fact that the extra DoFs provided by the additional antennas
facilitate a more precise beamforming and can efficiently
mitigate MUI. In particular, a substantial performance gain
can be achieved when increasing the number of antennas,
as the resulting beamforming gain outweighs the additional
incurred circuit power consumption. Yet, there is a diminishing
return in the performance gain for larger numbers of antennas
due to channel hardening. Furthermore, we can observe that
the three baseline schemes consume considerably more power
compared to the proposed optimal and suboptimal schemes.
In particular, for baseline scheme 1, a substantial amount of
power is consumed to maintain the hovering status. While
for baseline scheme 2, in addition to the considerable power
needed for hovering, the fixed MRT beamforming policy also
leads to a higher transmit power consumption. This is because
the fixed MRT beamforming vector is unable to fully exploit
the extra DoFs introduced by additional transmit antennas.
As a result, the total UAV power consumption decreases only
slightly as the number of transmit antennas increases. For
baseline scheme 3, the total power consumption is also higher
compared to that of the proposed optimal and suboptimal
schemes. This is due to the fact that the UAV transmitter can-
not fully exploit the available DoFs since the ZF beamforming
vector is partially fixed which negatively affects the required
transmit power.

E. Average Total UAV Power Consumption
Versus Number of Users

In Figure 12, we investigate the average total UAV power
consumption versus the number of users for different resource
allocation schemes in the presence of wind and NFZs. As can
be observed, the average total UAV power consumption for

Fig. 12. Average total UAV power consumption (Watt) versus number of
users, K , for M = 12 antennas at the UAV and different resource allocation
schemes in the presence of wind speed uncertainty and NFZs.

Fig. 13. Average total UAV power consumption (Watt) versus maximum nor-
malized AoD estimation error, ρk , for different resource allocation schemes
in the presence of wind speed uncertainty and NFZs.

the proposed schemes and the baseline schemes increases with
the number of users. This is because, if the number of users
is higher, the UAV-mounted transmitter has to dedicate more
DoFs to MUI mitigation which decreases the flexibility in
trajectory and beamforming design leading to a performance
degradation. Moreover, it can be observed that the proposed
suboptimal scheme closely approaches the performance of
the optimal scheme for all considered numbers of users.
The two baseline schemes cause a substantially higher power
consumption compared to the proposed schemes. This is due to
the fact that the baseline schemes cannot fully exploit the DoFs
introduced by the mobility of the UAV. For baseline scheme 2,
in addition to the considerable power needed for hovering,
the fixed MRT beamforming policy leads to a substantial
increase in transmit power.

F. Average Total UAV Power Consumption Versus
Maximum Normalized AoD Estimation Error

In Figure 13, we study the average total UAV power
consumption versus the maximum normalized AoD estima-
tion error, ρk, for different resource allocation schemes and
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Fig. 14. Average total UAV power consumption (Watt) versus the minimum
required SINR of the users, Γreqk

, for different resource allocation schemes
in the presence of wind speed uncertainty and NFZs.

different user location uncertainties in the presence of wind
speed uncertainty and NFZs. As expected, the total UAV
power consumption for all schemes increases monotonically
with ρk. This can be explained by the fact that, as the AoD
estimation error increases, the AAR uncertainty increases.
As a result, it becomes more difficult for the UAV-mounted
transmitter to perform accurate beamforming. Hence, the UAV-
mounted transmitter is forced to transmit the information
signal with a higher power to meet the QoS requirements of
the users. Moreover, we observe that the total UAV power
consumption for all schemes increases with increasing user
location uncertainty radius Dk. In fact, for larger Dk, the UAV
has to employ a less focused beamformer to cover the whole
user location uncertainty area which leads to a higher transmit
power for satisfying the users’ QoS requirements. Further-
more, the proposed optimal and suboptimal schemes achieve
considerable power savings compared to the two baseline
schemes due to the joint optimization of the 2-D trajectory
and the beamforming policy. In fact, the optimal trajectory
and the optimal beamforming policy complement each other
for efficient reduction of the total power consumption. On the
one hand, the trajectory design allows the UAV to perform
beamforming at the most favourable position. On the other
hand, due to the precise beamforming, the UAV can follow its
trajectory at the most power-efficient speed.

G. Average Total UAV Power Consumption Versus
Minimum Required User SINRs

Figure 14 shows the average total UAV power consumption
versus the minimum required user SINRs, Γreqk

, for different
resource allocation schemes. As expected, the average total
UAV power consumption of all schemes is monotonically non-
decreasing with respect to the minimum SINR threshold Γreq.
To meet a more stringent minimum required SINR, the UAV
has to increase its transmit power. Moreover, compared to
the scenario without NFZs, all considered schemes consume
slightly more power in the presence of NFZs. In fact, for
the proposed optimal and suboptimal schemes, the UAV has

to circle around the NFZs, whereas for baseline scheme 1,
the UAV has to adopt a suboptimal hovering position to avoid
trespassing the NFZs, which leads to a higher transmit power,
cf. Figure 7. Besides, we also show the average total power
consumption of non-robust scheme 2 in Figure 14. In particu-
lar, for non-robust scheme 2, an optimization problem similar
to (25) is formulated and solved but the estimated AoD and
user locations are treated as the actual ones. Then, using
the actual AoDs and user locations (which is not possible
in practice, of course), we loosen the power constraint in
C1 until the resulting beamforming vectors wk satisfy the
QoS requirements of all users. As can be observed, non-
robust scheme 2 results in a higher total power consumption
compared to the proposed robust scheme across the entire
considered range of Γreq. In fact, due to the AoD and user
location uncertainties, the focused beamforming vector of
non-robust scheme 2 may point into a the wrong direction,
cf. Figure 2, which degrades the system performance.

VI. CONCLUSION

In this paper, we investigated the optimal robust trajectory
and beamforming algorithm design for multiuser MISO UAV
communication systems. Since UAV jittering and user location
uncertainty can severely degrade the system performance
while wind speed uncertainty and NFZs may lead to safety
concerns, we took these aspects into account to facilitate
reliable and safe communication services for ground users.
In particular, we jointly optimized the 2-D trajectory and the
downlink beamformer of a UAV for minimization of the total
UAV power consumption. The problem formulation took into
account AoD estimation errors caused by UAV jittering, user
location uncertainty, wind speed uncertainty, and polygonal
NFZs. Since the coupling of the AoDs and the UAV trajectory
makes joint resource allocation design across multiple time
slots intractable, we optimized the trajectory and the beam-
forming policy on a time slot by time slot basis. Despite the
non-convexity of the resulting problem, we solved the problem
optimally by employing monotonic optimization theory and
SDP relaxation. To strike a balance between optimality and
computational complexity, we also proposed a suboptimal
iterative low-complexity scheme based on SCA. Our results
reveal not only the significant power savings enabled by the
proposed optimal and suboptimal schemes compared to two
baseline and two non-robust schemes, but also confirm their
robustness with respect to UAV jittering and user location
uncertainty. Moreover, our results show that the UAV can
fly along the desired trajectory with the minimum possible
aerodynamic power consumption if the average wind speed
is smaller than the maximum endurance speed of the UAV.
Besides, our results unveil that a robust design is necessary
to ensure safe operation of the UAV in the presence of wind
speed uncertainty and NFZs.

APPENDIX

A. Proof of Theorem 1

We start the proof by rewriting constraint C7 as
∨

i∈Sj

Yi(r′0) = 1, ∀j. In particular, we first assume that equality
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∨
i∈Sj

Yi(r′0) = 1, ∀j, holds. Then, there exist r′0 satisfying

at least one of the Sj inequalities pT
ijr

′
0 ≥ qij , ∀i, ∀j.

Moreover, since lij ∈ {0, 1} and G � 1, inequality
pT

ijr
′
0 − qij + Glij ≥ 0, ∀i, ∀j, holds.

On the other hand, assume that there exist r′0 satisfying the
inequality pT

ijr
′
0 − qij + Glij ≥ 0, ∀i, ∀j. Since the binary

variable lij meets the inequality
∑

i∈Sj

lij ≤ Sj − 1, ∀j, at least

one lij is equal to 0. Consequently, at least one of the Sj

inequalities pT
ijr

′
0−qij +Glij ≥ 0 must hold for lij = 0. As a

result, r′0 satisfies at least one inequality pT
ijr

′
0 ≥ qij ∀i, ∀j.

Hence, the logical equality ∨
i∈Sj

Yi(r′0) = 1, ∀j, holds and the

proof of Theorem 1 is complete.

B. Proof of Theorem 3

We start the proof by exploiting the abstract Lagrangian
duality [62]. In particular, we define

L̃(Wk, g, lij , χ) =
∑
k∈K

Tr(Wk) + g + χ
∑
j∈J

∑
i∈Sj

(
lij − l2ij

)
.

(69)

We note that L̃(Wk, g, lij , χ) is upper bounded if χ ≥ 0 and∑
j∈J

∑
i∈Sj

(
lij − l2ij

)
≤ 0. Thus, we can rewrite the optimization

problem in (60) equivalently as

φ∗ = minimize
Wk,r′0,vu,

lij ,A,g

maximize
χ≥0

L̃(Wk, g, lij , χ), (70)

where φ∗ denotes the optimal value of (60). On the other hand,
the dual problem of (60) is given by

maximize
χ≥0

minimize
Wk,r′0,vu,

lij ,A,g

L̃(Wk, g, lij , χ) = maximize
χ≥0

Υ(χ),

(71)

where Υ(χ) is defined as Υ(χ) Δ= minimize
Wk,r′0,vu,

lij ,A,g

L̃(Wk, g, lij , χ)

for notational simplicity. Then, the primal problem (70)
and the equivalent dual problem (71) meet the following
inequalities:

maximize
χ≥0

Υ(χ)

= maximize
χ≥0

minimize
Wk,r′0,vu,

lij ,A,g

L̃(Wk, g, lij, χ)

(a)

≤ minimize
Wk,r′0,vu,

lij ,A,g

maximize
χ≥0

L̃(Wk, g, lij, χ) = φ∗, (72)

where (a) is due to the weak duality. We note that
L̃(Wk, g, lij , χ) is monotonically increasing in variable χ
since

∑
j∈J

∑
i∈Sj

(
lij − l2ij

)
≥ 0 for 0 ≤ lij ≤ 1, ∀i, ∀j. As a

result, Υ(χ) is also increasing with χ. Moreover, (72) implies
that Υ(χ) is bounded from above by the optimal value of
problem (60), i.e., φ∗. Denote the optimal solution of the dual
problem in (71) by χ∗ and Φ∗ Δ= {W∗

k, (r′0)
∗,v∗

u, l∗ijA∗, g∗}.
Then, we study the solution structure of the dual problem (71)

by considering the following two cases. For the first case,
we assume that

∑
j∈J

∑
i∈Sj

(
l∗ij −(l∗ij)

2
)

= 0 for the dual problem

in (71). As a result, Φ∗ is also a feasible solution to the primal
problem in (60). Consequently, by substituting Φ∗ into the
optimization problem in (26), we have

φ∗ ≤
∑
k∈K

Tr(W∗
k) + g∗

(b)
= L̃(W∗

k, g∗, l∗ij , χ
∗) = Υ(χ∗),

(73)

where (b) is due to the assumption of∑
j∈J

∑
i∈Sj

(
l∗ij − (l∗ij)

2
)

= 0. By combining (72) and (73),

we can conclude that the gap between the equivalent primal
problem (70) and the dual problem (71) is zero, i.e.,

maximize
χ≥0

minimize
Wk,r′0,vu,

lij ,A,g

L̃(Wk, g, lij , χ)

= minimize
Wk,r′0,vu,

lij ,A,g

maximize
χ≥0

L̃(Wk, g, lij , χ) (74)

must hold for
∑

j∈J

∑
i∈Sj

(
lij − l2ij

)
= 0. Furthermore,

the monotonicity of Υ(χ) with respect to χ implies that
Υ(χ) = φ∗, ∀χ ≥ χ∗, which proves the result in Theorem 3.

Next, we study the case of
∑

j∈J

∑
i∈Sj

(
l∗ij − (l∗ij)

2
)

> 0

for the dual problem in (71). In this case, Υ(χ∗) =
maximize

χ≥0
Υ(χ) → ∞ is unbounded from above since Υ(χ) is

monotonically increasing in χ. This contradicts the inequality
in (72) as the primal problem in (60) has a finite objective
value. Therefore,

∑
j∈J

∑
i∈Sj

(
l∗ij − (l∗ij)

2
)

= 0 holds for the

optimal solution and the proof of Theorem 3 is complete.
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Abstract— In this article, we investigate the resource allo-
cation design for intelligent reflecting surface (IRS)-assisted
full-duplex (FD) cognitive radio systems. In particular, a sec-
ondary network employs an FD base station (BS) for serving
multiple half-duplex downlink (DL) and uplink (UL) users
simultaneously. An IRS is deployed to enhance the performance
of the secondary network while helping to mitigate the inter-
ference caused to the primary users (PUs). The DL transmit
beamforming vectors and the UL receive beamforming vectors
at the FD BS, the transmit power of the UL users, and
the phase shift matrix at the IRS are jointly optimized for
maximization of the total spectral efficiency of the secondary
system. The design task is formulated as a non-convex optimiza-
tion problem taking into account the imperfect knowledge of
the PUs’ channel state information (CSI) and their maximum
interference tolerance. Since the maximum interference tolerance
constraint is intractable, we apply a safe approximation to
transform it into a convex constraint. To efficiently handle the
resulting approximated optimization problem, which is still non-
convex, we develop an iterative block coordinate descent (BCD)-
based algorithm. This algorithm exploits semidefinite relaxation,
a penalty method, and successive convex approximation and is
guaranteed to converge to a stationary point of the approximated
optimization problem. Our simulation results do not only reveal
that the proposed scheme yields a substantially higher system
spectral efficiency for the secondary system than several baseline
schemes, but also confirm its robustness against CSI uncertainty.
Besides, our results illustrate the tremendous potential of IRS
for managing the various types of interference arising in FD
cognitive radio networks.
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state information, intelligent reflecting surface, cognitive radio,
full-duplex.
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I. INTRODUCTION

RADIO spectrum is a naturally limited resource in wire-
less communication systems. During the last couple of

decades, most of the available spectrum has been licensed
and allocated to provide various high data-rate communication
services. This has led to the problem of a spectrum crunch
for future wireless communication systems [2]. However,
according to measurements of the actual spectrum utilization,
e.g. [3], [4], a large amount of the allocated spectrum is
highly underutilized. To improve the utilization of the limited
spectral resource, cognitive radio (CR) has been proposed to
offer communication services to unlicensed secondary systems
within licensed frequency bands. One promising approach to
spectrum sharing is underlay CR where the secondary system
is allowed to use the spectrum concurrently with the primary
users (PUs) as long as the quality-of-service (QoS) of the
PUs is not severely impaired. Thus, to limit the performance
degradation caused to the primary network, the secondary
system has to be carefully designed [4]–[6]. For example,
the authors of [5] developed a joint transmit power allocation
and receive beamforming design to minimize the total transmit
power of the secondary transmitter, while constraining the
interference to the PUs to be below a given threshold. In [6],
the authors proposed a multi-objective optimization framework
and developed a Pareto-optimal resource allocation algorithm
to realize simultaneous wireless power and secure information
transfer in CR networks. However, since the CR networks
in [5], [6] employ half-duplex (HD) base stations (BSs) and the
uplink (UL) and downlink (DL) transmissions are performed
in orthogonal frequency bands, the radio spectral resources are
still underutilized.

To boost wireless spectral efficiency, full-duplex (FD) com-
munication has recently drawn considerable research inter-
est [7]–[11]. In fact, by incorporating FD BSs into CR
networks, the spectral efficiency can be potentially doubled
compared to traditional HD CR networks. However, since in
CR networks the secondary system has to share the spectrum
with the primary system, the QoS of the PUs is inevitably
impaired by the simultaneous UL and DL transmissions of
the secondary system. In general, compared to the PUs in
conventional HD CR networks, because of the larger number
of concurrent transmissions, the PUs in FD CR networks suffer
from more severe interference, which degrades the perfor-
mance of the primary network [7], [8]. Moreover, the self-
interference (SI) and co-channel interference (CCI) caused

0090-6778 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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by the simultaneous DL and UL transmissions, if left unat-
tended, can also significantly degrade the performance of the
secondary system [7]. To effectively manage the interference
in FD CR networks, different resource allocation designs were
developed in [9]–[11]. In [9], the sub-channel assignment, user
pairing, and power allocation was jointly optimized to improve
the spectral efficiency of a FD CR system. In [10], the authors
investigated robust DL beamforming and UL power allocation
for minimization of the maximum interference leakage to the
PUs while taking into account the QoS requirements of the
SUs. In [11], multi-antenna precoding and relaying strategies
for cooperative FD CR systems were developed to maximize
the spectral efficiency of the secondary system while taking
into account a minimum required data rate for the PUs.
Despite these promising results, the PUs in FD CR systems
may still suffer from significant interference as the radio fre-
quency (RF) propagation environment of wireless systems is
essentially random and largely uncontrollable. In fact, in unfa-
vorable radio propagation environments, the designs proposed
in [9]–[11] cannot mitigate the interference caused to the PUs
such that their QoS requirements may be violated. In this case,
since the PUs have a higher priority for utilizing the spectrum,
the communication in the secondary network may be strictly
limited leading to a severe performance degradation of the
secondary network. To overcome this problem, more effective
interference management methods are urgently needed to
facilitate reliable and spectrum-efficient FD CR networks.

Recently, intelligent reflecting surfaces (IRSs) have emerged
as a promising solution for harnessing interference in wire-
less communication systems [12]–[19]. In particular, an IRS
is a planar metasurface comprising a set of small passive
low-cost elements, such as phase shifters and printed dipoles,
which can be tuned individually to reflect the incident signals
with a desired phase shift [20]. By adaptively and smartly
tuning the phase shifts of the IRS elements according to
the dynamic radio propagation environment, the wireless
channel can be proactively manipulated, which introduces
additional degrees of freedom (DoFs) for resource alloca-
tion [12]. Moreover, the reflected signals can be combined
with the non-reflected signals in a constructive or destructive
manner to enhance the desired signal power strength or to
suppress detrimental interference, which improves the overall
system performance. Besides, due to their relatively simple
structure [20], IRSs can be flexibly installed on building
facades and interior walls, and thus can be smoothly integrated
into existing cellular communication systems [12]. Deploying
IRSs may increase the complexity of resource allocation algo-
rithm design. However, several works have shown that with
an advanced but computationally-efficient resource allocation
design IRS-assisted wireless systems can achieve significant
performance gains compared to conventional wireless systems
without IRS [13]–[15], [21], [22]. In particular, the authors
of [13] considered an IRS-aided multiple-input single-output
(MISO) system and studied the joint design of the beamform-
ing at the BS and the IRS to minimize the total BS transmit
power. The authors of [14] considered an IRS-enhanced single-
user system and developed two computationally efficient sub-
optimal algorithms for maximizing the received power of the

user. The authors of [15] introduced artificial noise (AN)
to improve the physical layer security of an IRS-assisted
multiuser communication system and jointly optimized the
IRS phase shifts, DL beamformers, and AN design. The
authors of [21] studied the benefits of IRSs in orthogonal
frequency division multiple access systems and formulated
a joint transmit power and IRS phase shift optimization
problem for maximization of the system throughput. The
authors of [22] investigated the joint BS beamforming and IRS
phase shift design and proposed two suboptimal algorithms to
guarantee physical layer security in an IRS-assisted multiple-
input single-output (MISO) system. However, the authors
of [13]–[15], [21], [22] considered HD systems, which cannot
exploit the full potential of IRSs. In fact, since IRSs naturally
operate in a FD manner [19], they can be conveniently
incorporated into existing FD CR network concepts to fur-
ther increase spectral efficiency. Yet, the designs proposed
in [13]–[15], [21], [22] are not directly applicable to
IRS-assisted FD CR networks. In particular, the simultaneous
UL and DL transmissions of the secondary system, the super-
position of the direct and reflected paths, and the coupling
between the DL beamforming vectors, UL transmit powers,
and IRS phase shifts makes the resource allocation design for
IRS-assisted FD CR networks very challenging. To the best
of the authors’ knowledge, the design of spectrally-efficient
IRS-assisted FD CR networks has not been investigated in the
literature, yet.

Motivated by the above discussion, in this article, we inte-
grate IRSs into FD CR networks and investigate the corre-
sponding resource allocation algorithm design. In particular,
as the secondary system is allowed to share the spectrum
of the primary system as long as the QoS of the PUs is
not severely compromised, the IRS is utilized to establish a
favorable radio propagation environment. In particular, we aim
to maximize the spectral efficiency of the secondary system
by jointly optimizing the DL transmit beamformers, the UL
transmit power, the UL receive beamformers, and the IRS
phase shifts. The problem formulation takes into account the
imperfect knowledge of the channel state information (CSI)
of the PUs at the FD BS of the secondary system and
the maximum interference leakage tolerance of the PUs.
Since the maximum interference leakage tolerance constraint
is intractable, we transform it into a convex constraint by
applying a safe approximation. Due to the coupling between
the optimization variables and the unit-modulus constraint
of the IRS phase shifts, even with the safe approximation,
the formulated problem is still highly non-convex and it
is very challenging to obtain the optimal solution. Hence,
we propose a block coordinate descent (BCD)-based iterative
algorithm to obtain a suboptimal solution [23]. In particular,
by applying successive convex approximation (SCA) [24] and
semidefinite relaxation (SDR), the DL transmit beamform-
ing and UL power allocation policies are obtained with the
other optimization variables being fixed. Then, we derive the
closed-form optimal solution for the receive beamforming
vector of the secondary BS given the other optimization
variables. Subsequently, we obtain the phase shift matrix of
the IRS by applying a penalty method [25] and SCA. The
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developed BCD algorithm is guaranteed to converge to a
stationary point of the approximated optimization problem.
Simulation results reveal that IRSs and the proposed algo-
rithm can significantly enhance the performance of secondary
networks while efficiently mitigating the interference to the
PUs.

Notations: In this article, boldface lower case and boldface
capital letters denote vectors and matrices, respectively. N

denotes the set of nonnegative integers. RN×M and CN×M

denote the space of N ×M real-valued and complex-valued
matrices, respectively. �{·} extracts the real part of a complex
number. HN denotes the set of all N -dimensional complex
Hermitian matrices. IN indicates the N ×N identity matrix.
|·| and ||·||2 denote the absolute value of a complex scalar and
the l2-norm of a vector, respectively. AT , A∗, and AH stand
for the transpose, the conjugate, and the conjugate transpose
of matrix A, respectively. A � 0 indicates that A is a
positive semidefinite matrix. Rank(A), Tr(A), [A]i,i, and
�A�∗ denote the rank, the trace, the (i, i)-entry, and the trace
norm of matrix A, respectively. xi denotes the i-th element
of vector x. Diag(X) represents a diagonal matrix whose
diagonal elements are extracted from the main diagonal of
matrix X; diag(x) denotes an N × N diagonal matrix with
main diagonal elements x1, · · · , xN . E {·} denotes statistical
expectation. ∼ and

Δ= stand for “distributed as” and “defined
as”, respectively. The distribution of a circularly symmetric
complex Gaussian random variable with mean μ and variance
σ2 is denoted by CN (μ, σ2). The gradient vector of function
f(x) with respect to x is denoted by ∇xf(x). x† denotes the
optimal value of optimization variable x.

II. SYSTEM MODEL

In this section, we present the IRS-assisted multiuser FD
CR network model and discuss our assumptions regarding the
CSI available for resource allocation.

A. IRS-Assisted Full-Duplex Cognitive Radio System Model

We consider a narrow-band IRS-assisted CR communication
system1 consisting of a primary license-holding network and
a secondary unlicensed network, cf. Figure 1. In particular,
the primary network comprises one primary transmitter and I
PUs, while the secondary network includes one secondary FD
BS, J UL users, and K DL users. The primary transmitter,
the I PUs, and the K + J secondary users are single-antenna
HD devices. The secondary FD BS is equipped with NT > 1
antennas,2 indexed by N Δ= {1, · · · , NT}, and simultaneously
performs DL transmission and UL reception in the same
frequency band.3 Due to the spectrum sharing, the QoS of
the primary network is impaired by interference leakage from

1In this article, we consider an underlay CR network [26] where the
secondary FD BS can opportunistically coexist with the primary transmitter as
long as the interference leakage to the PUs is kept below a certain threshold.

2To facilitate reliable UL signal detection, we assume that the number of
antennas equipped at the secondary FD BS is equal to or larger than the
number of secondary UL users, i.e., NT ≥ J .

3Simultaneous transmission and reception with the same antenna can be
realized by employing a circulator-based FD radio transceiver, as demonstrated
in [27].

Fig. 1. CR system comprising a secondary FD base station, J = 2 secondary
UL users, and K = 2 secondary DL users sharing the spectrum with I = 2
PUs. The IRS is deployed to enhance the system performance of the secondary
network and to mitigate the interference to the PUs. The direct paths and
reflected paths are denoted by solid arrows and dashed arrows, respectively.
The signals of the primary transmitter are not shown for clarity.

the secondary network. To effectively suppress the interfer-
ence and improve the system performance of the secondary
network, an IRS is deployed. In particular, the IRS comprises
M phase shifters, indexed by M Δ= {1, · · · ,M}, and is
programmable and reconfigurable via an IRS controller. For
notational simplicity, we define sets I = {1, · · · , I}, J =
{1, · · · , J}, and K = {1, · · · ,K} for the indices of the PUs,
secondary UL users, and secondary DL users, respectively.

In a given time slot, the secondary FD BS transmits signal�
k∈K

wkd
DL
k to the K DL users, where dDL

k ∈ C and wk ∈
CNT×1 denote the information symbol for secondary DL user
k and the corresponding beamformer, respectively. Without
loss of generality, we assume E{��dDL

k

��2} = 1, ∀k ∈ K. The
received signals at PU i, the secondary FD BS, and secondary
DL user k are given by, respectively,4

yP
i =

�
fP
D,i +

�
fP
R,i

�H
ΨfP−I

��
n∈I

	
pP
nd

P
n
 �� 

Signal from the primary transmitter

+
�
j∈J

√
pjei,jd

UL
j +

�
j∈J

√
pjlHR,iΨhR,jd

UL
j
 �� 

Interference from the secondary uplink

+
�
k∈K

lHD,iwkd
DL
k +

�
k∈K

lHR,iΨFwkd
DL
k
 �� 

Interference from the secondary downlink

+nP
i , (1)

yUL =
�
j∈J

√
pjhD,jd

UL
j +

�
j∈J

√
pjFHΨhR,jd

UL
j
 �� 

Desired signal

+ S
�
k∈K

wkd
DL
k +

�
k∈K

FHΨFwkd
DL
k
 �� 

Self-interference

4In this article, we assume that the secondary network is time-synchronized
and frequency-synchronized with the primary network.
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+
�
fUL + FHΨfP−I

��
n∈I

	
pP
nd

P
n
 �� 

Interference from the primary transmitter

+nUL, (2)

yDL
k = gHD,kwkd

DL
k + gHR,kΨFwkd

DL
k
 �� 

desired signal

+
�

r∈K\{k}
gHD,kwrd

DL
r +

�
r∈K\{k}

gHR,kΨFwrd
DL
r
 �� 

Multiuser interference

+
�
j∈J

√
pjqj,kd

UL
j +

�
j∈J

√
pjgHR,kΨhR,jd

UL
j
 �� 

Co-channel interference

+
�
fDL
D,k + gHR,kΨfP−I

��
n∈I

	
pP
nd

P
n
 �� 

Interference from the primary transmitter

+nDL
k . (3)

Here, fP
D,i ∈ C and fP

R,i ∈ CM×1 denote the channel between
the primary transmitter and PU i and the channel vector
between the IRS and PU i, respectively. Diagonal matrix
Ψ = diag

�
ejψ1 , · · · , ejψM

�
represents the phase shift matrix

of the IRS [13], where ψm ∈ [−π, π], ∀m ∈ M, is the
phase shift introduced by the m-th IRS element. The channel
between the primary transmitter and the IRS is denoted by
fP−I ∈ CM×1. pP

n ∈ R and dP
n ∈ C denote the transmit

power for PU n, ∀n ∈ I, and the corresponding data symbol,
respectively. lD,i ∈ CNT×1 and lR,i ∈ CM×1 denote the
channel vector between the secondary BS and PU i and the
channel vector between the IRS and PU i, respectively.5 Matrix
F ∈ CM×NT models the channel between the secondary
FD BS and the IRS. Variables dUL

j ∈ C and pj ∈ R are
the data symbol and the corresponding power transmitted by
secondary UL user j to the secondary FD BS, respectively.
We assume E{��dUL

j

��2} = 1 without loss of generality. The
channel gain between secondary UL user j and PU i is denoted
by ei,j . hD,j ∈ CNT×1 and hR,j ∈ CM×1 denote the channel
vector between the secondary BS and secondary UL user
j and the channel vector between the IRS and secondary
UL user j, respectively. S

�
k∈K

wkd
DL
k in (2) represents the

SI resulting from the DL transmission with S ∈ CNT×NT

denoting the SI channel matrix of the secondary FD BS. The
term

�
k∈K

FHΨFwkd
DL
k in (2) denotes the SI introduced by

the reflection of the DL transmit signal by the IRS. fUL ∈
CNT×1 denotes the channel between the primary transmitter
and the secondary BS. gD,k ∈ CNT×1 and gR,k ∈ CM×1

denote the channel vector between the secondary BS and
DL user k and the channel vector between the IRS and DL
user k, respectively. The channel gain between secondary
UL user j and secondary DL user k is denoted by qj,k.
fDL
D,k denotes the channel between the primary transmitter and

5The delays between the signal propagating through the direct path and the
reflected path via the IRS are typically much shorter than the symbol duration.
For instance, for a cell with a radius of 50 m as considered in our simulations,
cf. Figure 2, the maximum round-trip delay is 0.33 μs, which is significantly
shorter than the 70 μs symbol duration in the Long-Term Evolution (LTE)
standard [28]. Thus, we neglect the impact of intersymbol interference in this
article.

secondary DL user k. nUL ∼ CN (0, σ2
nU

INT) and nDL
k ∼

CN (0, σ2
nk

) denote the equivalent additive white Gaussian
noises (AWGNs) at the secondary FD BS and secondary DL
user k, which capture the combined effect of thermal noise
and signal processing noise [29]. nP

i includes the joint effects
of thermal noise and signal processing noise at PU i.

Remark 1: In the following, for resource allocation design,
we model the interference from the primary transmitter to
the secondary BS and to secondary user k, i.e., (fUL +
FHΨfP−I)

�
n∈I

�
pP
nd

P
n and (fDL

D,k + gHR,kΨfP−I)
�
n∈I

�
pP
nd

P
n ,

as additional AWGNs zUL ∼ CN (0, σ2
z0INT) and zDL

k ∼
CN (0, σ2

zk
), ∀k ∈ K, respectively. This is due to the fact that,

as can be seen from (2) and (3), the signals originating from
the primary transmitter may affect the IRS phase shift matrix
design. To accurately capture this effect for resource allocation
algorithm design, both the transmit power of the primary
transmitter and the CSI between the primary transmitter and
the secondary network have to be known. However, learning
the power allocation policy and the CSI of the primary network
would significantly increase the signalling overhead for the
secondary network. As a result, resource allocation design
taking into account the exact structure of the interference from
the primary transmitter may not be feasible in practice. For
notational simplicity, in the following, we include variances
σ2
z0 and σ2

zk
in the variances of nUL and nDL

k , respectively.
We note that the interference from the primary transmitter
is approximated as additional AWGN for resource allocation
design only. For evaluation of the performance of the pro-
posed resource allocation scheme, the actual system defined
by (1)-(3) is simulated.

B. Channel State Information

In this article, we assume that both the primary network and
the secondary network are time division duplex systems with
slowly time-varying channels. During the channel estimation
phase of the secondary network, the secondary FD BS can
reliably estimate all links of the secondary network with the
assistance of the SUs and the IRS [30]. As a result, we assume
that the perfect CSI of the secondary network is available at
the secondary FD BS for resource allocation. However, this
assumption may not be valid for the channels between the
secondary network and the PUs. In practice, the PUs can not
be expected to directly interact with the secondary FD BS.
Moreover, the PUs may be idle for a long period of time due to
bursty data transmission. As a result, the CSI of the PUs can be
obtained only occasionally at the secondary FD BS when the
PUs are active in the primary network, which leads to outdated
PU CSI at the FD BS. In this article, we develop a worst-case
optimization framework to capture the impact of imperfect PU
CSI on resource allocation design [31]. Specifically, the CSI
of the link between the FD BS and PU i, i.e., lD,i, the CSI of
the link between the IRS and PU i, i.e., lR,i, and the CSI of
the link between PU i and secondary UL user j are modeled
as:

lD,i = lD,i + ΔlD,i and ΩD,i
Δ=
�
lD,i|ΔlHD,iΔlD,i ≤ ε2D,i

�
,

(4)
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lR,i = lR,i + ΔlR,i and ΩR,i
Δ=
�
lR,i|ΔlHR,iΔlR,i ≤ ε2R,i

�
,

(5)

ei,j = ei,j + Δei,j and Ωi,j
Δ=
�
ei,j |ΔeHi,jΔei,j ≤ ε2i,j

�
,

(6)

respectively, where lD,i, lR,i, and ei,j are the CSI estimates
and ΔlD,i, ΔlR,i, and Δei,j are the corresponding unknown
estimation errors, respectively. We denote the channel uncer-
tainty regions6 by continuous sets ΩD,i, ΩR,i, and Ωi,j with
radii εD,i, εR,i, and εi,j , respectively.

III. RESOURCE ALLOCATION PROBLEM FORMULATION

In this section, after introducing the adopted performance
metrics, we formulate the proposed resource allocation opti-
mization problem.

A. Performance Metrics

The achievable spectral efficiency (bits/s/Hz) of secondary
DL user k is given by RDL

k = log2(1 + ΓDL
k ), where ΓDL

k

is the receive signal-to-noise-plus-interference ratio (SINR) of
secondary DL user k and given by (7), where (7) is shown
at the bottom of the page. On the other hand, the spectral
efficiency (bits/s/Hz) of secondary UL user j is given by
RUL
j = log2(1 + ΓUL

j ), where ΓUL
j is the receive SINR of

secondary UL user j and given by (8), where (8) is shown
at the bottom of the page. Here, vj ∈ CNT×1 is the receive
beamforming vector for decoding the message of secondary
UL user j at the secondary FD BS. We note that due to
the limited dynamic range of the receiver, the SI cannot be
suppressed completely even if perfect CSI of the SI channel
is available at the secondary FD BS [33]. Thus, similar
to [33], [34], we model the residual SI after cancellation at
each receive antenna as an independent Gaussian distortion
noise with zero mean and a variance proportional to the
power received at that antenna. In particular, according to
[33, Eq. (4)], the term DSI

j in (8) is given by (9), where (9)
is shown at the bottom of the page. Here, constant η,
0 < η � 1, captures the impact of the residual interference

6In this article, we assume the radius of the channel uncertainty region
is known. Yet, we note that the channel estimation error itself is a random
variable which lies in the given channel uncertainty region. In practice, the CSI
estimates and the channel uncertainty regions can be determined by applying
existing channel estimation schemes for IRS-assisted wireless systems, see,
e.g., [30], [32].

after SI cancellation at the secondary FD BS [35]. We note that
due to the propagation attenuation between the FD BS and the
IRS, the reflected interference in (9) is negligible7 compared
to self-interference. As a result, we can approximate (9) as
follows

DSI
j ≈ Tr

�
ηvjvHj Diag

��
k∈K

SwkwH
k SH

��
. (10)

B. Optimization Problem Formulation

In this article, we optimize wk, vj , pj , and Ψ to maximize
the system spectral efficiency of the secondary network while
limiting the interference caused by the secondary network to
the PUs. The corresponding optimization problem is formu-
lated as follows

maximize
wk,vj ,pj ,Ψ

F
�
wk,vj , pj,Ψ

�
s.t. C1:

�
k∈K

�wk�2 ≤ PDL
max,

C2: 0 ≤ pj ≤ pj,max, ∀j,
C3:
���[Ψ]m,m

��� = 1, ∀m,
C4: max

lD,i∈ΩD,i

lR,i∈ΩR,i

ei,j∈Ωi,j

�
k∈K

��lHD,iwk + lHR,iΨFwk

��2
+
�
j∈J

pj
��ei,j + lHR,iΨhR,j

��2 ≤ ptoli , ∀i,

(11)

where F
�
wk,vj , pj ,Ψ

�
is defined as F

�
wk,vj , pj,Ψ

� Δ=�
j∈J

ωUL
j log2

�
1 + ΓUL

j

�
+
�
k∈K

ωDL
k log2(1 + ΓDL

k ). Here,

ωUL
j ≥ 0 and ωDL

k ≥ 0 denote predefined weights for
secondary UL user j and DL user k, which can be used to
prioritize the UL and DL users. PDL

max > 0 and pj,max > 0 in
constraints C1 and C2 limit the maximum transmit powers of
the secondary FD BS and secondary UL user j, respectively.
Constraint C3 guarantees that the diagonal phase shift matrix
Ψ has M unit modulus components on its main diagonal.
C4 constrains the maximum tolerable interference leakage.

7For a CR network where the IRS is 100 m away from the FD BS
and a path loss exponent of 2, the term FHΨFwkw

H
k FHΨHF +

FHΨFwkw
H
k SH + Swkw

H
k FHΨHF is attenuated by approximately a

factor of 10−8 compared to the term Swkw
H
k SH .

ΓDL
k =

���gHD,kwk + gHR,kΨFwk

���2�
r∈K\{k}

���gHD,kwr + gHR,kΨFwr

���2 +
�
j∈J

pj

���qj,k + gHR,kΨhR,j

���2 + σ2
nk

. (7)

ΓUL
j =

pj
��vHj hD,j + vHj FHΨhR,j

��2�
t∈J\{j}

pt
��vHj hD,t + vHj FHΨhR,t

��2 +DSI
j + σ2

U �vj�2
. (8)

DSI
j = Tr

�
ηvjvHj Diag

��
k∈K

SwkwH
k SH
 �� 

self-interference

+FHΨFwkwH
k FHΨHF + FHΨFwkwH

k SH + SwkwH
k FHΨHF
 �� 

reflected interference

��
. (9)
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In particular, despite the imperfection of the CSI, the sec-
ondary network is required to ensure that the interference
leakage to PU i does not exceed the maximum interference
tolerance ptoli .

We note that problem (11) is a highly non-convex optimiza-
tion problem. In particular, the coupling of the optimization
variables, the non-convexity of the objective function, the unit-
modulus constraint C3, and the semi-infinite constraint C4 are
the main obstacles for solving the considered resource alloca-
tion problem efficiently. To the best of the authors’ knowledge,
the globally optimal solution of this problem is in general
intractable. In the next section, we develop a suboptimal
BCD-based iterative algorithm to solve problem (11) with
polynomial time complexity.

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

In this section, we first employ a safe approximation to
convert constraint C4 to a set of convex constraints. Then,
we propose a BCD-based algorithm to tackle the approximated
problem, which is still highly non-convex. In fact, BCD is a
widely applicable approach that divides coupled optimization
variables into several blocks and solves the optimization
problem for one block at a time while fixing the variables
in the other blocks [23]. In particular, we divide the optimiza-
tion variables into three blocks: {wk, pj}, {vj}, and {Ψ}.
By employing SCA and SDR, we obtain the transmit beam-
forming vector wk and transmit power pj . Then, we derive
a closed-form solution for receive beamforming vector vj .
Subsequently, we solve for Ψ by applying a penalty method
and SCA.

A. Transformation of the Semi-Infinite Constraints

In the literature, semi-infinite constraints are commonly
transformed into tractable linear matrix inequality (LMI) con-
straints [31]. However, due to the coupling between the opti-
mization variables and the coupling between the signals of the
direct and reflect paths, it is challenging to transform constraint
C4 into an LMI that is jointly convex with respect to wk and
Ψ. To facilitate robust resource allocation algorithm design,
we first apply inequality |a+ b+ c|2 ≤ 3 |a|2 +3 |b|2 +3 |c|2,
where a, b, and c are complex numbers, to the left hand side of
constraint C4 to obtain a tractable upper bound.8 In particular,
a subset of the set defined by constraint C4 is given by

C4: max
lD,i∈ΩD,i

lR,i∈ΩR,i

ei,j∈Ωi,j

�
k∈K

� ��ΔlHD,iwk

��2 +
���lHD,iwk + l

H

R,iΨFwk

���2

+
��ΔlHR,iΨFwk

��2 �
+
�
j∈J

pj

� ���ei,j + l
H

R,iΨhR,j

���2
+ |Δei,j |2 +

��ΔlHR,iΨhR,j

��2 � ≤ ptoli

3
, ∀i.

(12)

8We note that the upper bound becomes tight when a, b, and c have similar
values.

In the remainder of the article, we tackle the following
approximated optimization problem:

maximize
wk,vj ,pj ,Ψ

F
�
wk,vj , pj,Ψ

�
s.t. C1,C2,C3,C4. (13)

We note that any feasible solution of (13) is also a fea-
sible solution of (11). Hence, (13) is a safe approxima-
tion of (11) [36]. Then, we define slack variables βi,
γi, and τi and rewrite constraint C4 equivalently as con-
straints C4a, C4b, C4c, and C4d which are shown at the
bottom of the next page, respectively. We note that C4d
is convex in wk and Ψ individually while C4a, C4b, and
C4c are still semi-infinite constraints. Next, we introduce a
lemma for transforming constraints C4a, C4b, and C4c into
LMI constraints.

Lemma 1 (S-Procedure [37]): Let a function fm(x), m ∈
{1, 2}, x ∈ CN×1, be defined as

fm(x) = xHAmx + 2��aHmx
�

+ am, (17)

where Am ∈ HN , am ∈ CN×1, and am ∈ R. Then,
the implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0 holds if and only
if there exists a δ ≥ 0 such that

δ

�
A1 a1

aH1 a1

�
−
�
A2 a2

aH2 a2

�
� 0, (18)

provided that there exists a point �x such that
fm(�x) < 0.

To facilitate the application of Lemma 1, we first rewrite
constraint C4c as follows

ΔlHR,iΨ
��
k∈K

FWkFH +
�
j∈J

pjHR,j

�
ΨHΔlR,i + τi ≤ γi,

∀i, (19)

where Wk
Δ= wkwH

k and HR,j
Δ= hR,jhHR,j . By apply-

ing Lemma 1, the following implication can be obtained:
ΔlHR,iΔlR,i − ε2R,i ≤ 0 ⇒ C4c holds if and only if there
exist δi ≥ 0 such that�C4c: S

�C4ci
(Wk , pj ,Ψ, γi, τi, δi)

=
�
δiIM − ΨBΨH 0

0 −δiε2R,i − τi + γi

�
� 0, ∀i, (20)

where B Δ=
�
k∈K

FWkFH +
�
j∈J

pjHR,j . To simplify the

notation, we rewrite the LMI in (20) as follows�C4c: S
�C4ci

(Wk , pj ,Ψ, γi, τi, δi)

=
�
δiIM 0
0 −δiε2R,i − τi + γi

�
− CHΨBΨHC � 0, (21)

where C =
�

IM 0
�
. Similarly, by applying Lemma 1,

we rewrite constraints C4a and C4b as follows�C4a: S
�C4ai

(pj , βi, ιi)

=

�
ιiIJ 0
0 −�

j∈J
ιi

2
i,j − βi + ptoli

3

�
− DH

i PDi � 0,

(22)
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�C4b: S
�C4bi

(Wk , βi, γi, κi)

=
�
κiINT 0

0 −κiε2D,i − γi + βi

�
−
�
k∈K

EH
i WkEi � 0,

(23)

where ιi, κi ≥ 0, P Δ= diag(p1, · · · , pJ), Di
Δ=
�

IJ 0
�
, and

Ei
Δ=
�

INT 0
�
. We note that �C4a is convex with respect to

pj and �C4b is convex with respect to Wk. Moreover, �C4c is
convex with respect to pj and Wk but is still non-convex with
respect to Ψ due to the quadratic term ΨBΨH .

B. Optimizing {Wk, pj} for Given Ψ and vj
For given Ψ and vj , we first rewrite the terms���gHD,kwr + gHR,kΨFwr

���2 and
���qj,k + gHR,kΨhR,j

���2 in (7),

the term
��hHD,tvj + hHR,tΨ

HFvj
��2 in (8), and the terms���lHD,iwk + l

H

R,iΨFwk

���2 and
���ei,j + l

H

R,iΨhR,j

���2 in (16), as
shown in the bottom of this page, as follows, respectively,��gHD,kwk + gHR,kΨFwk

��2 =
���gHk wk

��2 = Tr(�gk�gHk Wk),
(24)��hHD,jvj + hHR,jΨ

HFvj
��2 =

����hHj vj
���2 = Tr(�hj�hHj vjvHj ),

(25)���lHD,iwk + l
H

R,iΨFwk

���2 =
����lHi wk

���2 = Tr(�li�lHi Wk), (26)

��qj,k + gHR,kΨhR,j

��2 = |ϕj,k|2 , (27)���ei,j + l
H

R,iΨhR,j

���2 = |ϑi,j |2 , (28)

where �gk ∈ CNT×1, �hj ∈ CNT×1, �li ∈ CNT×1, ϕj,k ∈ C,
and ϑi,j ∈ C are defined as �gk = gD,k + FHΨHgR,k, �hj =
hD,j + FHΨhR,j , �li = lD,i + FHΨH lR,i, ϕj,k = qj,k +
gHR,jΨhR,j , and ϑi,j = ei,j + l

H

R,iΨhR,j , respectively. Then,
the received SINR of the k-th secondary DL user and the
received SINR of the j-th secondary UL user can be rewritten
as (29) and (30) which are shown at the bottom of the page,
respectively. Constraint C4d can be rewritten equivalently as:�C4d:

�
k∈K

Tr(�li�lHi Wk) +
�
j∈J

pj |ϑi,j |2 ≤ τi, ∀i. (31)

Then, the joint DL transmit beamforming and UL power
allocation design, i.e., {Wk, pj}, is formulated as follows

maximize
Wk∈H

NT ,pj ,
βi,γi,τi,δi,ιi,κi

�
j∈J

ωUL
j log2(1 + ΓUL

j )

+
�
k∈K

ωDL
k log2(1 + ΓDL

k )

s.t. C1:
�
k∈K

Tr(Wk) ≤ PDL
max, C2,�C4a,�C4b,�C4c,�C4d,

C5: Wk � 0, ∀k, C6: Rank(Wk) ≤ 1, ∀k.
(32)

C4a: max
ei,j∈Ωi,j

�
j∈J

pj |Δei,j |2 + βi ≤ ptoli

3
, ∀ and C4b: max

lD,i∈ΩD,i

�
k∈K

��ΔlHD,iwk

��2 + γi ≤ βi, ∀i, (14)

C4c: max
lR,i∈ΩR,i

�
k∈K

��ΔlHR,iΨFwk

��2 +
�
j∈J

pj
��ΔlHR,iΨhR,j

��2 + τi ≤ γi, ∀i, (15)

C4d:
�
k∈K

���lHD,iwk + l
H

R,iΨFwk

���2 +
�
j∈J

pj

���ei,j + l
H

R,iΨhR,j

���2 ≤ τi, ∀i. (16)

ΓDL
k =

Tr(�gk�gHk Wk)�
r∈K\{k}

Tr(�gk�gHk Wr) +
�
j∈J

pj |ϕj,k|2 + σ2
nk

and (29)

ΓUL
j =

pjTr(�hj�hHj vjvHj )�
t∈J\{j}

ptTr(�ht�hHt vjvHj ) + Tr
�
ηvjvHj Diag

� �
k∈K

SWkSH
��

+ σ2
U �vj�2

, (30)

f1 = −
�
k∈K

ωDL
k log2

⎛⎝�
r∈K

Tr(�gk�gHk Wr) +
�
j∈J

pj |ϕj,k|2 + σ2
nk

⎞⎠ , (33)

f2 = −
�
j∈J

ωUL
j log2

��
t∈J

ptTr(�ht�hHt vjvHj ) + σ2
U �vj�2 + Tr

�
ηvjvHj Diag

��
k∈K

SWkSH
���

, (34)

g1 = −
�
k∈K

ωDL
k log2

⎛⎝ �
r∈K\{k}

Tr(�gk�gHk Wr) +
�
j∈J

pj |ϕj,k|2 + σ2
nk

⎞⎠ , (35)

g2 = −
�
j∈J

ωUL
j log2

⎛⎝ �
t∈J\{j}

ptTr(�ht�hHt vjvHj ) + σ2
U �vj�2 + Tr

�
ηvjvHj Diag

��
k∈K

SWkSH
��⎞⎠ . (36)
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Here, constraints C5, C6, and Wk ∈ HNT are imposed to
ensure that Wk = wkwH

k holds after optimization. The
non-convexity of (32) originates from the objective function
and the rank constraint C6. Next, we aim to obtain a sub-
optimal solution of (32) iteratively by applying SCA. For
notational simplicity, we define f1, f2, g1, and g2 which are
shown at the bottom of the previous page, respectively. Note
that the negative objective function in (32) can be expressed
as f1 + f2 − g1 − g2.

Then, in the n-th iteration of the SCA, for a given feasible9

point (Wn
k , p

n
j ), we construct a global underestimator of

g1(Wk, pj) as follows

g1(Wk, pj) ≥ g1(Wn
k , p

n
j ) +

�
j∈J

∇pjg1(W
n
k , p

n
j )(pj − pnj )

+
�
k∈K

Tr
��∇Wk

g1(Wn
k , p

n
j )
�H(Wk − Wn

k )
�

Δ= �g1(Wk, pj,Wn
k , p

n
j ), (37)

where

∇Wk
g1

=
�

t∈K\{k}

−ωDL
k

ln2 �gk�gHk�
r∈K\{t}

Tr(�gk�gHk Wr) +
�
j∈J

pj |ϕj,k|2 + σ2
nk

,

(38)

and

∇pjg1

=
�
k∈K

−ωDL
k

ln2 |ϕj,k|2�
r∈K\{k}

Tr(�gk�gHk Wr) +
�
j∈J

pj |ϕj,k|2 + σ2
nk

. (39)

Similarly, for a given feasible point (Wn
k , p

n
j ), the global

underestimator of g2(Wk, pj) is given by

g2(Wk, pj) ≥ g2(Wn
k , p

n
j )

+
�
k∈K

Tr
��∇Wk

g2(Wn
k , p

n
j )
�H(Wk − Wn

k )
�

+
�
j∈J

∇pjg2(W
n
k , p

n
j )(pj − pnj )

Δ= �g2(Wk, pj,Wn
k , p

n
j ), (40)

where ∇Wk
g2 and ∇pjg2 are shown at the bottom of the page,

respectively.

9The superscript n denotes the SCA iteration index.

Algorithm 1 Successive Convex Approximation Algorithm for
Obtaining W†

k and p†j
1: Set initial point W1

k and p1
j , iteration index n = 1, and

error tolerance 0 ≤ εSCA � 1.
2: repeat
3: Solve (43) for given Wn

k and pnj and store the interme-
diate solution Wk and pj

4: Set n = n+ 1, Wn
k = Wk, and pnj = pj

5: until | �F (Wn
k ,p

n
j )− �F (Wn−1

k ,pn−1
j )|

| �F (Wn
k ,p

n
j )| ≤ εSCA

6: W†
k = Wn

k and p†j = pnj

Then, for a given feasible point (Wn
k , p

n
j ) in the n-th itera-

tion, a lower bound of the maximization problem in (32) can
be obtained by solving the following optimization problem

minimize
Wk,pj ,βi,γi,
τi,δi,ιi,κi

�F (Wk, pj)

s.t. C1,C2,�C4a,�C4b,�C4c,�C4d,C5,C6, (43)

where �F (Wk, pj) is defined as �F (Wk, pj)
Δ= f1 + f2 −�g1(Wk, pj ,Wn

k , p
n
j )−�g2(Wk, pj ,Wn

k , p
n
j ). We note that the

remaining non-convexity of problem (43) stems from rank-one
constraint C6. Hence, we adopt SDR and remove constraint
C6. The relaxed version of problem (43) can now be optimally
solved by standard convex solvers such as CVX [38]. Next,
we verify the tightness of SDR in the following theorem.
Theorem 1: If PDL

max > 0, an optimal beamforming matrix
Wk satisfying Rank(Wk) ≤ 1 can always be obtained.

Proof: Please refer to Appendix A. �
Then, we tighten the upper bound of (32) by solving (43)

iteratively. The SCA algorithm for obtaining the optimal w†
k

and p†j of (32) is summarized in Algorithm 1. We note that
Algorithm 1 is guaranteed to converge to a locally optimal
solution of (32) [24].

C. Optimizing vj for Given Ψ, Wk, and pj

For given Ψ, Wk, and pj , the UL spectral efficiency is
maximized if for each UL user j, the receive beamforming
vector vj maximizes the corresponding receive SINR ΓUL

j .
In particular, we can obtain the optimal receive beamforming
vector vj by solving the following optimization problem [39]:

maximize
vj

pjvHj �hj�hHj vj
vHj RIjvj

, (44)

∇Wk
g2 = −ω

UL
j

ln2

�
j∈J

ηvjvHj Diag(SSH)�
t∈J\{j}

ptTr(�ht�hHt vjvHj ) + Tr
�
ηvjvHj Diag

� �
k∈K

SWkSH
��

+ σ2
U �vj�2

, (41)

∇pjg2 = −ω
UL
j

ln2

�
r∈J\{j}

Tr(�hr�hHr vjvHj )�
t∈J\{r}

ptTr(�ht�hHt vrvHr ) + Tr
�
ηvjvHj Diag

� �
k∈K

SWkSH
��

+ σ2
U �vr�2

. (42)
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where �hj was defined in (25) and RIj ∈ CNT×NT is defined
as follows

RIj =
�

t∈J\{j}
pt
�
hD,thHD,t + FHΨhR,thHD,t

+hD,thHR,tΨ
HF + FHΨhR,thHR,tΨ

HF
�

+ ηDiag
��
k∈K

SWkSH
�

+ σ2
UINT . (45)

Moreover, the optimization problem in (44) can be recast as
the following equivalent convex optimization problem [39]

minimize
vj

vHj RIjvj

s.t. C7:
√
pjvHj �hj = 1. (46)

The optimal solution of (46) is given by [39]

v†
j = �j

√
pjR−1

Ij

�hj , (47)

where �j is a scalar to adjust v†
j such that equality constraint

C7 is satisfied. We note that for the original problem in (44), �j
can be omitted as it has no effect on the value of the objective
function.

D. Optimizing Ψ for Given Wk, pj , and vj
For given Wk, pj , and vj , the optimization problem for the

IRS phase shift design is given by

maximize
Ψ,βi,γi,τi,
δi,ιi,κi

�
j∈J

ωUL
j log2(1 + ΓUL

j ) +
�
k∈K

ωDL
k log2(1 + ΓDL

k )

s.t. C3,�C4a,�C4b,�C4c,�C4d. (48)

We note that both the objective function and constraints C3 and�C4c are non-convex functions which makes the IRS design
very challenging. Next, we first tackle the non-convex objec-
tive function in (48). In particular, we rewrite the quadratic

term
���gHD,kwr + gHR,kΨFwr

���2 in (7) as follows:��gHD,kwr + gHR,kΨFwr

��2
= gHD,kWrgD,k + 2��gHD,kWrFHΨHgR,k

�
+ gHR,kΨFWrFHΨHgR,k

= gHD,kWrgD,k + 2��gHD,kWrFHdiag(gR,k)θ
�

+ θHdiag(gHR,k)FWrFHdiag(gR,k)θ

= Tr
� �

θH ρ∗
� �diag(gHR,k)F

gHD,k

�
×Wr

�
FHdiag(gR,k) gD,k

� �θ
ρ

��
= Tr(�θHGkWrGH

k
�θ) = Tr(ΘGkWrGH

k ), (49)

where optimization variables θ ∈ C
M×1, �θ ∈ C

(M+1)×1, and
Θ ∈ C(M+1)×(M+1) are defined as θ = [ejψ1 , · · · , ejψM ]H ,�θ = [θT ρ]T , and Θ = �θ�θH , respectively. Moreover, ρ ∈ C is
a dummy variable with |ρ|2 = 1. Besides, Gk ∈ C(M+1)×NT

is defined as Gk =
��

diag(gHR,k)F
�T

g∗
D,k

�T
.

Similarly, we rewrite the term
���qj,k + gHR,kΨhR,j

���2 in (7),

the term
��hHD,tvj + hHR,tΨFvj

��2 in (8), and the terms

���lHD,iwk + l
H

R,iΨFwk

���2 and
���ei,j + l

H

R,iΨhR,j

���2 in (16) as
follows, respectively,��qj,k + gHR,kΨhR,j

��2 = Tr(ΘQj,k), (50)��hHD,tvj + hHR,tΨ
HFvj

��2 = Tr(ΘTHtvjvHj HH
t ), (51)���lHD,iwk + l

H

R,iΨFwk

���2 = Tr(ΘLiWkLHi ), (52)���ei,j + l
H

R,iΨhR,j

���2 = Tr(ΘPi,j), (53)

where Ht ∈ C(M+1)×NT and Li ∈ C(M+1)×NT are
defined as Ht =

��
diag(hHR,t)F

�T
h∗

D,t

�T
and Li =��

diag(l
H

R,i)F
�T

l
∗
D,i

�T
, respectively. Moreover, Qj,k ∈

C(M+1)×(M+1) and Pi,j ∈ C(M+1)×(M+1) are defined as

Qj,k

=
�
diag(gHR,k)HR,jdiag(gR,k) q∗j,kdiag(gHR,k)hR,j

hHR,jdiag(gR,k)qj,k |qj,k|2
�
,

(54)

Pi,j

=

�
diag(l

H

R,i)HR,jdiag(lR,i) e∗i,jdiag(l
H

R,i)hR,j

hHR,jdiag(lR,i)ei,j |ei,j |2
�
, (55)

respectively.
Then, we rewrite constraint �C4d equivalently as C4d:
�
k∈K

Tr(ΘLiWkLHi ) +
�
j∈J

Tr(ΘPi,j) ≤ τi, ∀i. (56)

We note that  C4d is a convex constraint with respect to Θ.
Moreover, the receive SINR of secondary DL user k and the
receive SINR of secondary UL user j can be equivalently
rewritten as (57) and (58), where (57) and (58) are shown
at the bottom of the next page, respectively. For notational
simplicity, we define �f1, �f2, �g1, and �g2 which are shown at the
bottom of the next page, respectively. Note that the negative
objective function in (48) can be expressed as �f1+ �f2−�g1−�g2.

Next, by employing singular value decomposition, we trans-
form constraint �C4c into a convex constraint. Specifically, for
given Wk and pj , we recast matrix B as B =

�
s
�σs�us�vHs ,

where �σs are the singular values of B, and �ud and �vd are
the corresponding left and right singular vectors of B, respec-
tively. Then, we rewrite the term CHΨBΨHC in constraint�C4c as follows

CHΨBΨHC =
�
s

�σsCHdiag(�us)θθHdiag(�vHs )C

=
�
s

�σs �DsΘ�Es, (63)

where �Ds, �Es ∈ C
(M+1)×(M+1) are defined as �Ds =�

CHdiag(�us) 0
�

and �Es =
�
diag(�vs)C

0

�
, respectively.

Hence, we can rewrite constraint �C4c equivalently as C4c: SC4ci
(Θ, τi, δi)

=
�
δiIM 0
0 −δiε2R,i − τi + γi

�
−
�
s

�σs �DsΘ�Es � 0. (64)
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Now, constraint  C4c is a convex function with respect
to Θ.

Therefore, for given Wk, pj , and vj , we can obtain Θ by
solving the following optimization problem

minimize
Θ∈H

M+1,βi,γi,
τi,δi,ιi,κi

�f1 + �f2 − �g1 − �g2
s.t.  C3: Diag(Θ) = IM+1, �C4a,�C4b. C4c, C4d,

C8: Θ � 0, C9: Rank(Θ) = 1, (65)

where Θ � 0 and constraints C8 and C9 are imposed to
ensure Θ = �θ�θH holds after optimization. We note that the
rank-one constraint C9 is an obstacle to solving problem (65).
In the literature, SDR is commonly adopted to tackle the
rank-one constraint [40]. Yet, applying SDR to (65) may not
result in a rank-one matrix Θ. Moreover, some approximation
methods such as Gaussian randomization cannot guarantee the
convergence of the overall BCD algorithm [40]. To tackle
this obstacle, we first transform the combinatorial constraint
C9 equivalently into the following difference of convex (d.c.)
functions constraint [41]: C9: �Θ�∗ − �Θ�2 ≤ 0, (66)

where �Θ�2 denotes the spectral norm, i.e., �Θ�2 = σ1(Θ),
where σi(Θ) denotes the i-th largest singular value of matrix
Θ. We note that for any Θ ∈ HM+1 and Θ � 0, we have
�Θ�∗ =

�
i

σi(Θ) ≥ �Θ�2 = max
i

σi(Θ) and the equality

holds if and only if Θ is a rank-one matrix. Yet, the resulting
constraint  C9 is still non-convex. To circumvent this obstacle,
we adopt a penalty approach [25] and recast (65) as follows:

minimize
Θ∈H

M+1,βi,γi,
τi,δi,ιi,κi

�f1 + �f2 − �g1 − �g2 + χ
� �Θ�∗ − �Θ�2

�

s.t.  C3,�C4a,�C4b, C4c, C4d,C8, (67)

where χ � 0 is a constant which penalizes the objective
function for any matrix Θ whose rank is larger than one. Then,
we use a sequence of χq to approach infinity and reveal that
problem (67) is equivalent to problem (65) in the following
theorem [25].

Theorem 2: Denote the optimal solution of problem (67)
as Θq with penalty factor χq . When χq is sufficiently large,
i.e., χq → ∞, every limit point Θ of the sequence {Θq} is
an optimal solution of problem (65).

Proof: Please refer to Appendix B. �
The optimization problem in (67) is still an intractable

problem due to the non-convexity of the objective function.
Yet, we note that �f1, �f2, �g1, �g2, �Θ�∗, and �Θ�2 are all
convex functions and the problem in (67) is in the canonical
form of d.c. programming. Thus, a stationary point of (67)
can be obtained by applying SCA [24]. To start with, we first
construct a global underestimator of �g1. In particular, for any
feasible point Θn, the differentiable convex function �g1(Θ)
satisfies the following inequality:

�g1(Θ) ≥ �g1(Θn) + Tr
��∇Θ�g1(Θn)

�H(Θ − Θn)
�

Δ= g1(Θ,Θ
n), (68)

where ∇Θ�g1 is shown at the bottom of the page. We note
that g1(Θ,Θ

n) in (68) is a global underestimator of �g1(Θ).
Similarly, for feasible point Θn, global underestimators of�g2(Θ) and �Θ�2 can be constructed as follows, respectively,

�g2(Θ) ≥ �g2(Θn) + Tr
��∇Θ�g2(Θn)

�H(Θ − Θn)
�

Δ= g2(Θ,Θ
n), (69)

ΓDL
k =

Tr(ΘGkWkGH
k )�

r∈K\{k}
Tr(ΘGkWrGH

k ) +
�
j∈J

pjTr(ΘQj,k) + σ2
nk

, (57)

ΓUL
j =

pjTr(ΘTHjvjvHj HH
j )�

t∈J\{j}
ptTr(ΘTHtvjvHj HH

t ) + Tr
�
ηvjvHj Diag

� �
k∈K

SWkSH
��

+ σ2
U �vj�2 . (58)

�f1 = −
�
k∈K

ωDL
k log2

��
r∈K

Tr(ΘGkWrGH
k ) +

�
j∈J

pj
�
Tr(ΘQj,k)

�
+ σ2

nk

�
, (59)

�f2 = −
�
j∈J

ωUL
j log2

��
t∈J

ptTr(ΘTHtvjvHj HH
t ) + Tr

�
ηvjvHj Diag

��
k∈K

SWkSH
��

+ σ2
U �vj�2

�
, (60)

�g1 = −
�
k∈K

ωDL
k log2

� �
r∈K\{k}

Tr(ΘGkWrGH
k ) +

�
j∈J

pj
�
Tr(ΘQj,k)

�
+ σ2

nk

�
, (61)

�g2 = −
�
j∈J

ωUL
j log2

� �
t∈J\{j}

ptTr(ΘTHtvjvHj HH
t ) + Tr

�
ηvjvHj Diag

��
k∈K

SWkSH
��

+ σ2
U �vj�2

�
. (62)

∇Θ�g2 =
�
j∈J

−ωUL
j

ln2

�
t∈J\{j}

ptHtvjvHj HH
t�

t∈J\{j}
pt
�
Tr(ΘTHtvjvHj HH

t )
�

+ Tr
�
ηvjvHj Diag

� �
k∈K

SWkSH
��

+ σ2
U �vj�2 , (70)
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Algorithm 2 Successive Convex Approximation Algorithm for
Obtaining Ψ†

1: Set initial point Θ1, iteration index n = 1, and error
tolerance 0 ≤ εSCA � 1.

2: repeat
3: For given Θn, obtain the intermediate solution Θ by

solving (72)
4: Set n = n+ 1 and Θn = Θ
5: until | �F (Θn)− �F (Θn−1)|

| �F (Θn)| ≤ εSCA

6: Θ† = Θn

7: Recover Ψ† from Θ†

Algorithm 3 Block Coordinate Descent Algorithm

1: Set initial points (wk)1, (pj)1, (vj)1, and (Ψ)1, iteration
index m = 1, and convergence tolerance 0 ≤ εBCD � 1

2: repeat
3: Solve (43) for given Ψ = (Ψ)m and vj = (vj)m by

applying Algorithm 1 and obtain (wk)m+1 and (pj)m+1

4: Calculate (vj)m+1 for given Ψ = (Ψ)m, wk =
(wk)m+1, and pj = (pj)m+1 using (47)

5: Solve (72) for wk = (wk)m+1, pj = (pj)m+1, and vj =
(vj)m+1 by applying Algorithm 2 and recover (Ψ)m+1

based on (Θ)m+1

6: Set m = m+ 1

7: until

������
F

�
(wk)m,(pj)

m,(vj)
m,(Ψ)m

�
F

�
(wk)m−1,(pj)m−1,(vj)m−1,(Ψ)m−1

� − 1

������ ≤ εBCD,

where F (·, ·, ·, ·) is defined in (11)
8: w†

k = (wk)m, p†j = (pj)m, v†
j = (vj)m, Ψ† = (Ψ)m

where ∇Θ�g2 is shown at the bottom of the previous page, and

�Θ�2 ≥ �Θn�2 + Tr
�
θnmax(θ

n
max)

H(Θ − Θn)
�

Δ= Δ
n
,

(71)

where θnmax is the eigenvector associated with the principal
eigenvalue of Θn.

Therefore, for any given point Θn, an upper bound on (65)
is obtained by solving the following optimization problem:

minimize
Θ∈H

M+1,βi,
γi,τi,δi,ιi,κi

�F (Θ) Δ= �f1 + �f2 − g1 − g2 + χ
� �Θ�∗ − Δ

n�
s.t.  C3,�C4a,�C4b. C4c, C4d,C8. (72)

Note that (72) is a convex optimization problem and the
optimal solution of (72) can be obtained via CVX [38].
The proposed algorithm for solving (67) is summarized in
Algorithm 2. We note that the function value of (67) is upper
bounded by the minimum of (72). Moreover, by iteratively
applying Algorithm 2, we can gradually tighten the upper
bound and obtain a sequence of solutions Θ. Furthermore,
the objective function of (72) is monotonically non-increasing
and the developed algorithm is guaranteed to converge to a
stationary point of (67) [24].

The overall BCD based algorithm is summarized in
Algorithm 3. Recall that objective function in (43) is

Fig. 2. Simulation setup for an IRS-assisted FD CR network which comprises
I = 2 PUs, K = 2 DL users, and J = 3 UL users.

monotonically decreasing in each iteration of Algorithm 1 and
the receive beamforming vector v†

j admits a closed-form solu-
tion, cf. (47). We note that any limit point of the non-increasing
sequence {(wk)m, (pj)m, (vj)m, (Ψ)m}m∈N

obtained with
Algorithm 3 is a stationary point of (13). Moreover, the func-
tion value of the sequence {(wk)m, (pj)m, (vj)m, (Ψ)m}m∈N

is guaranteed to converge to a stationary value10 of the objec-
tive function of (13) in polynomial time [23]. We note that due
to the safe approximation of constraint C4, a stationary point
of (13) is a feasible suboptimal solution of the original prob-
lem in (11). Furthermore, according to [42, Theorem 3.12],
the computational complexity of an SDP problem with m SDP
constraints, where each constraint contains an n× n positive
semidefinite matrix, is given by O�mn3 +m2n2 +m3

�
. For

the relaxed version of problem (43), we have m = 3I and
n = NT, while for problem (72), we have m = 2I and
n = M + 1. Therefore, the computational complexity of
each iteration of the developed BCD algorithm is given by
O
�
log( 1

εSCA
)
�
3IN3

T+9I2N2
T +2I(M+1)3+4I2(M+1)2+

35I3
��

.

V. SIMULATION RESULTS

In this section, we study the system performance of the
proposed resource allocation scheme via simulations. The
schematic system model for the simulated FD CR network
is shown in Figure 2.

A. Simulation Setup

We focus on the resource allocation of one sector of the
secondary network. The distance from the secondary FD BS
to the IRS is 50 m.11 Unless specified otherwise, the primary
network contains I = 2 PUs while the secondary network
comprises K = 2 secondary DL users and J = 3 sec-
ondary UL users. Both the PUs and the SUs are uniformly
and randomly distributed in the considered sector. For the
ease of presentation, in the sequel, the maximum normalized

10We note that swapping the order of steps 3, 4, and 5 would not affect the
convergence of Algorithm 3 [23]. Yet, the order of steps 3, 4, and 5 may
affect the value to which Algorithm 3 converges as a different order implies
a different search direction in the feasible set.

11In practice, the location of the IRS can be either optimized or chosen for
convenience.
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estimation errors of the PU CSI are defined as υ2
D,i =

ε2D,i

�lD,i�2 ,

υ2
R,i = ε2R,i

�lR,i�2 , and υ2
i,j = ε2i,j

|ei,j |2 , where υ2
D,i = υ2

R,i =
υ2
i,j = υ2, ∀i ∈ I, ∀j ∈ J . Moreover, the path loss model for

the reflected path is given by PLS
R = C2

0 (dBR)αBR(dRU)αRU ,
where C0 = 40 dB is a constant related to the carrier center
frequency at the reference distance of 1 m. Variables dBR = 50
m and dRU are the distance between the FD BS and the IRS
and the distance between the IRS and the users, respectively,
and αBR = 2.1 and αRU = 2.3 are the corresponding path
loss exponents [13]. The path loss model for the direct path
is given by PLS

D = C0(dBU)αBU , where αBU = 3.9 is the
path loss exponent.12 The fading coefficients of the SI channel
are generated as independent and identically distributed Rician
random variables with Rician factor 5 dB [34]. Besides, for
the channels between the secondary FD BS and all I+J +K
users, we model the small scale fading coefficients of the
channels of the direct paths as independent and identically
distributed Rayleigh random variables while the small scale
fading coefficients of the channels of the reflected paths follow
a Rician distribution.

Furthermore, the total transmit power of the primary trans-
mitter is assumed to be pP =

�
i∈I

pP
i = 35 dBm. More-

over, the path loss model for the reflected path between the
primary transmitter and secondary DL user k is given by
PLP

Rk
= C2

0 (rP)αPR(rRk )αRU , where αPR = 3.6 denotes
the path loss exponent of the channel between the primary
transmitter and the IRS,13 and rP = 150 m and rRk denote
the distance between the primary transmitter and the IRS
and the distance between the IRS and secondary DL user
k, respectively. The path loss model for the reflected path
between the primary transmitter and the secondary FD BS
is given by PLP

R0
= C2

0 (rP)αPR(dBR)αBR . The path loss
model for the direct path between the primary transmitter
and secondary DL user k is given by PLP

Dk
= C0(rDk )αPU ,

where rDk and αPU = 3.9 denote the distance between the
primary transmitter and secondary DL user k and the path loss
exponent of the corresponding channel. The path loss model
for the direct path between the primary transmitter and the
secondary FD BS is given by PLP

D0
= C0(rD0 )αPB , where

rR0 = 100 m and αPB = 3.6 denote the distance between
the primary transmitter and the secondary FD BS and the
corresponding path loss exponent, respectively.

In the following, for resource allocation algorithm design,
the interference caused by the primary transmitter, i.e., (fUL +
FHΨfP−I)

�
n∈I

�
pP
nd

P
n and (fDL

D,k + gHR,kΨfP−I)
�
n∈I

�
pP
nd

P
n ,

is modelled as additional AWGN zUL ∼ CN (0, σ2
z0INT) and

zDL
k ∼ CN (0, σ2

zk
), ∀k ∈ K, respectively. Variances σ2

z0
and σ2

zk
, ∀k ∈ K, are set as σ2

z0 = pP
�

1
PLP

R0

+ 1
PLP

D0

�
12In practice, IRSs are usually deployed at favourable locations. As a result,

we assume that the reflected signals suffer from a less severe path loss
compared to the signals directly received from the BS.

13In this article, the IRS is intended to serve the users located in the area
of the secondary network. Thus, the IRS is deployed at a location that is
favorable for the secondary network. As a result, we assume that the link
between the primary transmitter and the IRS suffers from a more severe path
loss compared to the link between the secondary FD BS and the IRS.

TABLE I

SYSTEM PARAMETERS ADOPTED IN SIMULATIONS

and σ2
zk

= pP
�

1
PLP

Rk

+ 1
PLP

Dk

�
, respectively. Hence, when

implementing Algorithm 3, the total variances of the AWGN
at the secondary FD BS and at secondary DL user k are set
to be (σ2

z0 + σ2
nU

) and (σ2
zk

+ σ2
nk

), ∀k ∈ K, respectively.
On the other hand, for performance evaluation, we apply
the solution obtained with Algorithm 3 in (2) and (3) and
calculate the spectral efficiency taking into account the exact
interference caused by the primary transmitter, i.e., (fUL +
FHΨfP−I)

�
n∈I

�
pP
nd

P
n and (fDL

D,k + gHR,kΨfP−I)
�
n∈I

�
pP
nd

P
n ,

respectively. Besides, for all channels involving the primary
transmitter, we model the small scale fading coefficients of the
channels as independent and identically distributed Rayleigh
random variables. The parameter values adopted in our simu-
lations are listed in Table I.

B. Baseline Schemes

For comparison, we consider four baseline schemes. For
baseline scheme 1, zero-forcing beamforming (ZF-BF) is
employed at the FD BS for both DL and UL transmissions
and the phases of the IRS are generated in a random manner.
In particular, the directions of both the DL beamformer wk for
desired user k and UL beamformer vj for desired user j are
fixed and lie in the null spaces of all the other DL user channels
and all the other UL user channels, respectively. Then, by opti-
mizing the DL and UL transmit powers, i.e., pDL

k ∈ R and
pj , we solve the problem in (13) subject to power constraints
C1 and C2 and interference leakage constraint C4 by applying
Algorithm 1.14 For baseline scheme 2, we assume that the
considered FD CR network does not employ an IRS.15 Then,
we optimize DL beamforming vectors wk, UL beamforming
vectors vj , and the transmit powers of the UL users for
maximization of the system spectral efficiency subject to
constraints C1, C2, and C4 in (13). For baseline scheme 3,

14The optimization problem resulting for baseline scheme 1 is still
non-convex due to the non-convex objective function in (13).

15For baseline scheme 2, we solve (43) and (44) by applying Algorithm 3
with Ψ = 0.

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on July 07,2022 at 09:58:16 UTC from IEEE Xplore.  Restrictions apply. 



7388 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 12, DECEMBER 2020

TABLE II

COMPUTATIONAL COMPLEXITY COMPARISON

we assume that the secondary BS operates in the HD mode
where the UL reception and the DL transmission are realized
in two orthogonal time slots of equal duration. As a result, both
CCI and SI do not exist. In particular, for the first time slot,
the DL spectral efficiency is maximized by jointly optimizing
wk and Ψ subject to constraints C1, C3, and C4 in (13).16

Then, for the second time slot, we maximize the UL spectral
efficiency by optimizing UL beamforming vector vj , phase
shift matrix Ψ, and the transmit powers of UL users, i.e., pj
taking into account constraints C2, C3, and C4 in (13). For a
fair comparison, the resulting total spectral efficiency obtained
for baseline scheme 3 is multiplied by a factor of one half due
to the orthogonal time slots needed for separating the UL and
DL transmissions. For baseline scheme 4, we assume that the
IRS employs random phase shifts. Then, we optimize the DL
beamforming vectors wk, the UL beamforming vectors vj ,
and the transmit powers of the UL users for maximization of
the system spectral efficiency subject to constraints C1, C2,
and C4 in (13).

Furthermore, to reveal the tradeoff between the compu-
tational complexity and the achievable system performance,
the computational complexities of the proposed scheme and
the four baseline schemes are provided in Table II shown at the
top of next page. While the proposed scheme entails a higher
computational complexity compared to baseline schemes 1,
2, and 4, our simulation results in Figures 4-8 reveal that
the proposed scheme also achieves a significantly higher
performance.

C. Convergence of Algorithm 3

In Figure 3, we investigate the convergence of the proposed
BCD algorithm for different numbers of PUs I , secondary
UL users J , secondary DL users K , antenna elements NT,
and IRS reflecting elements M . In particular, we consider
three cases: Case 1 with NT = M = 6, I = K = 2, and
J = 3; Case 2 with NT = M = 6, I = K = 4, and J = 5;
Case 3 with NT = M = 10, I = K = 4, and J = 5.
We can observe that for all three cases, the proposed algorithm
monotonically converges to a stationary point. Specifically, for
Case 1, the proposed algorithm converges within 10 itera-
tions of Algorithm 3. For Case 2, the proposed algorithm
needs considerably more iterations (roughly 30 iterations of

16For maximization of the DL spectral efficiency, we obtain wk and Ψ
by applying Algorithm 3 with pj = 0 and vj = 0, ∀j ∈ J . Similarly,
for maximization of the UL spectral efficiency, we obtain pj , vj , and Ψ by
applying Algorithm 3 with wk = 0, ∀k ∈ K .

Fig. 3. Convergence of the proposed BCD algorithm for different values of
NT, M , I , J , and K with ptoli = −90 dBm, υ2 = 10%, and PDL

max =
30 dBm.

Algorithm 3) to converge since the larger number of users
leads to more optimization variables and constraints in (11).
Compared to Case 2, for Case 3, the proposed algorithm needs
around 10 extra iterations for convergence since the larger
values of NT and M enlarge the size of the solution space
of the considered problem significantly. We also note that the
number of iterations required for the proposed algorithm to
converge is more sensitive to the number of users than to the
number of antennas and reflecting elements.

D. Average System Spectral Efficiency Versus Maximum DL
Transmit Power

In Figure 4, we study the average system spectral efficiency
versus the maximum DL transmit power, PDL

max, for different
resource allocation schemes. As expected, the system spec-
tral efficiency increases monotonically with PDL

max. Moreover,
we observe that the proposed scheme outperforms all baseline
schemes. In fact, compared to the baseline schemes, the sig-
nificant performance improvement achieved by the proposed
resource allocation scheme is enabled by the joint optimization
of Φ, wk, pj , and vj . On the one hand, the proposed scheme
can create a more favorable radio propagation environment
by optimizing the phase shift matrix of the IRS. On the
other hand, it can fully exploit the DoFs introduced by the
multiplexing of multiple UL and DL users on the same spectral
resource via FD, which improves the spectral efficiency of the
CR network. On the contrary, the four baseline schemes yield
a dramatically lower system spectral efficiency. Specifically,
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Fig. 4. Average system spectral efficiency (bits/s/Hz) versus maximum
downlink transmit power (dBm) for different resource allocation schemes for
NT = 8, M = 8, I = 2, J = 3, K = 2, ptoli = −90 dBm, and υ2 = 10%.

for baseline scheme 1, the FD BS is unable to fully exploit
the DoFs available for resource allocation because of the
fixed beamforming vector. Although the multiuser interfer-
ence (MUI) is mitigated by ZF-BF, both the CCI and the
remaining SI become more serious as PDL

max increases which
limits the system spectral efficiency. For baseline scheme 2,
since there is no IRS available, there are no DoFs for customiz-
ing a favorable radio propagation environment for enhancing
the desired signal and suppressing the interference at the
PUs. For baseline scheme 3, although orthogonal DL and
UL transmissions completely avoid CCI and SI, the resulting
strictly suboptimal use of the DL and UL time resources
leads to a significant loss of spectral efficiency. Baseline
scheme 4 achieves a considerable system spectral efficiency
improvement compared to baseline scheme 2. The reasons
behind this are twofold. On the one hand, the IRS facilitates
a higher received power for both the secondary users and the
secondary FD BS because of the reflected path established by
the IRS. On the other hand, the beamforming vectors for both
UL and DL transmission are optimized to match the cascaded
channels of the reflected paths, i.e., hHR,jΨF and gHR,kΨF,
respectively, which potentially improves the performance of
the secondary network. Nevertheless, the proposed scheme still
outperforms baseline scheme 4 by a significant margin due to
the joint optimization of all available resources.

E. Average System Spectral Efficiency Versus Number of
Secondary Users

Figure 5 depicts the average system spectral efficiency
versus the number of secondary DL users for different resource
allocation schemes. As can be seen from Figure 5, as K grows,
the system spectral efficiency achieved with the proposed
scheme and baseline schemes 1-3 increase since all schemes
are able to exploit multiuser diversity. Similarly, we observe
that the performance of the proposed scheme improves when
the number of UL users, J , increases. However, compared to
the proposed scheme, the system spectral efficiency for the
baseline schemes are significantly lower. In particular, due to

Fig. 5. Average system spectral efficiency (bits/s/Hz) versus number of
downlink users for different resource allocation schemes for NT = 8, M = 8,
I = 2, υ2 = 10%, ptoli = −90 dBm, and PDL

max = 30 dBm.

the partially fixed beamforming pattern of baseline scheme 1,
the increasing CCI and SI associated with larger K cannot be
mitigated which results in a substantially lower system spectral
efficiency. For baseline scheme 2, since the IRS is not utilized,
the system is unable to mitigate the growing MUI in UL and
DL introduced by the increasing number of DL users K . For
baseline scheme 3, the achieved system spectral efficiency
is still lower compared to the proposed scheme due to the
inefficient utilization of radio spectrum caused by the HD BS.
Furthermore, in Figure 5, we verify the accuracy of modeling
the interference caused by the primary transmitter as additional
AWGN. Based on the resource allocation policy obtained
by applying Algorithm 3, we compare the average system
spectral efficiency for two cases: For Case A, we evaluate
the performance of the system by modelling the interference
from the primary network, i.e., (fUL +FHΨfP−I)

�
n∈I

�
pP
nd

P
n

and (fDL
D,k + gHR,kΨfP−I)

�
n∈I

�
pP
nd

P
n , as additional AWGNs

zUL ∼ CN (0, σ2
z0INT) and zDL

k ∼ CN (0, σ2
zk

), ∀k ∈ K,
respectively. For Case B, the interference from the primary net-
work is modelled exactly as (fUL+FHΨfP−I)

�
n∈I

�
pP
nd

P
n and

(fDL
D,k + gHR,kΨfP−I)

�
n∈I

�
pP
nd

P
n for performance evaluation,

as described in Section V-A. As can been seen from Figure 5,
the performance difference between Case A and Case B is very
small. This suggests that modelling the interference caused
by the primary transmitter as additional AWGN is indeed
appropriate.

F. Average System Spectral Efficiency Versus Number of
Antenna/IRS Elements

In Figure 6, we investigate the average system spectral
efficiency versus the number of antenna/IRS elements. Specif-
ically, to reveal the performance gain achieved by deploying
an IRS, for the proposed scheme two cases are considered:
Case 1 with a fixed number of antennas at the secondary BS
(NT = 4) and increasing M and Case 2 with a fixed number
of phase shifters (M = 4) and increasing NT. We observe that
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TABLE III

COMPARISON BETWEEN THE ACTUAL INTERFERENCE AND ITS UPPER BOUND

Fig. 6. Average system spectral efficiency (bits/s/Hz) versus number of
elements for different resource allocation schemes for K = 2, I = 2, J = 3,
υ2 = 10%, ptoli = −90 dBm, and PDL

max = 30 dBm.

increasing the number of elements in Case 1 results in a larger
performance gain compared to Case 2. The reason behind this
is twofold. On the one hand, as the number of reflectors at the
IRS increases, there are more DoFs for customizing favorable
BS-IRS-user channels which improves both the UL and the
DL beamforming gain. On the other hand, the additional IRS
elements can reflect more power of the signal transmitted by
the secondary FD BS which results in a power gain. Moreover,
as can be seen from Figure 6, the average system spectral
efficiency for the proposed scheme and the three baseline
schemes improve as the number of antennas, NT, at the FD
BS increases. This can be explained by the fact that the extra
DoFs provided by the additional antennas facilitates a higher
beamforming resolution for both DL transmission and UL
reception which lead to higher received SINRs. Yet, as NT

increases, the channel hardening effect leads to a diminishing
growth rate of the system spectral efficiency. Figure 6 also
shows that the average system spectral efficiency of the
proposed scheme increases faster with NT than the average
system spectral efficiency of the baseline schemes thanks to the
proposed optimization framework which exploits the system
resources efficiently. Furthermore, for the parameter values
adopted in Figure 6 and NT = 4 and M = 10, we also verify
the tightness of the inequality used to safely approximate
constraint C4 in (12). The corresponding numerical results,
which have been obtained by averaging over different channel
realizations, are provided in Table III shown at the top of this
page. As can be seen from Table III, the difference between the
actual interference and the upper bound is only 0.3 dB. This
indicates that the proposed safe approximation is relatively
tight.

Fig. 7. Average system spectral efficiency (bits/s/Hz) versus maximum
normalized channel estimation error, υ2 , for different schemes for NT =
M = 8, K = I = 2, J = 3, ptoli = −90 dBm, and PDL

max = 30 dBm.

G. Average System Spectral Efficiency versus Maximum
Normalized Channel Estimation Error

In Figure 7, we study the average system spectral efficiency
versus the maximum normalized channel estimation error.
As expected, the average system spectral efficiency decreases
with increasing υ2. This is due to the fact that, as υ2 increases,
the secondary BS becomes less flexible and more conservative
in resource allocation. In particular, the BS has to allocate
more DoFs to satisfy the interference leakage constraint C4.
As a result, fewer DoFs are available for suppressing the SI
and facilitating accurate DL beamforming at the FD BS which
degrades the system performance. Besides, over the entire
range of υ2, the proposed scheme significantly outperforms
baseline schemes 1-3. This unveils that by jointly optimizing
all available DoFs, the proposed scheme can mitigate the
interference leakage more efficiently than the three baseline
schemes, even in the presence of CSI uncertainty. Besides,
compared to the proposed scheme and baseline scheme 3,
we observe that baseline scheme 1 and baseline scheme 2 are
less sensitive to channel estimation errors in the considered
range. For baseline scheme 1, the random phase shift pattern
of the IRS already results in a significant performance loss and
increasing υ2 from 0 to 10% only leads to a small additional
loss. For baseline scheme 2, since the IRS is not deployed,
only the imperfect knowledge of the CSI of the direct paths
affects the performance, which leads to a smaller degradation.

H. Outage Probability Versus Maximum Interference
Leakage Tolerance

Figure 8 shows the outage probability of the users in the
primary network versus the maximum interference leakage
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Fig. 8. Outage probability (%) versus maximum interference leakage
tolerance (dBm) for different resource allocation schemes for NT = 8,
M = 8, K = 2, I = 2, J = 3, υ2 = 10%, and PDL

max = 30 dBm.

tolerance for different resource allocation schemes. The outage
probability is defined as the probability that the interference
leakage from the secondary network to the i-th PU is higher
than a predefined target interference leakage tolerance ptari

.
For comparison, we also study the outage probability of a
non-robust scheme. Specifically, for the non-robust scheme,
we solve a problem similar to (11) but treat the estimated
CSI of the PUs as perfect CSI. Then, using the actual CSI
of the PUs, we check if the interference leakage constraint
C4 in (11) is satisfied. As can be observed from Figure 8,
both the proposed scheme and baseline schemes 1-4 yield
a significant outage probability reduction compared to the
non-robust scheme. Moreover, as we set the maximum inter-
ference leakage tolerance to ptoli = −90 dBm, the outage
probabilities of the proposed scheme and all baseline schemes
decrease to zero for target interference leakage tolerances
ptari ≤ −90 dBm. In contrast, the non-robust scheme still
suffers from outages. These results underline the robustness
of the proposed scheme against imperfect CSI.

VI. CONCLUSION

In this article, we proposed to integrate an IRS into a
multiuser FD CR system to simultaneously improve the system
performance of the secondary network and effectively mitigate
the interference caused to the PUs. In particular, the system
spectral efficiency of the secondary network was maximized
by jointly optimizing the DL transmit beamforming vectors
and the UL receive beamforming vectors at the FD BS, the UL

transmit power of the UL users, and the phase shift matrix at
the IRS. We considered the robust design of IRS-assisted FD
CR systems taking into account the imperfect knowledge of
the CSI of the PUs. Since the resulting interference leakage
tolerance constraint is an obstacle to efficient resource alloca-
tion algorithm design, we proposed a safe approximation of the
original optimization problem. To tackle the non-convexity of
the resulting design problem, we developed a BCD algorithm
to solve the approximated problem in an alternating manner.
In particular, the design of the DL transmit beamformers and
UL transmit power was tackled by SCA and SDR, and the opti-
mal UL receive beamformers were derived in closed form. The
unit modulus constrained optimization problem introduced by
the IRS was first transformed to a rank-constrained problem
and then addressed by applying a penalty method and SCA.
The proposed BCD algorithm is guaranteed to converge to
a stationary point of the approximated optimization problem.
Simulation results not only revealed the significant system
spectral efficiency improvement achieved by the proposed
scheme compared to four baseline schemes but also verified its
robustness against the imperfect knowledge of the CSI of the
PUs. Moreover, our results illustrated that IRSs are an efficient
means to mitigate the various forms of interference in FD CR
systems.

Finally, we note that the system model considered in this
article can serve as a starting point for studying the impact of
practical constraints in IRS-assisted FD CR systems. Potential
future research topics in this direction include IRS-assisted
FD CR systems with hardware impairments and discrete phase
shifts.

APPENDIX

A. Proof of Theorem 1

To start with, we recast the relaxed version of (43) in
equivalent form as (73) which is shown at the bottom of the
page. Here, �φk and �ψj are slack variables and Ξ collects
all terms which are not relevant for the proof. Note that
the problem in (73) is jointly convex with respect to all
optimization variables and the Slater’s condition is satisfied
for (73) [37]. Therefore, strong duality holds, i.e., the gap
between the optimal value of (73) and that of its dual problem
is zero [37]. Specifically, the Lagrangian function of (73) in
terms of beamforming matrix Wk is given as follows

L = ξ
�
k∈K

Tr(Wk) −
�
k∈K

Tr
��∇Wk

�g1 + ∇Wk
�g2�HWk

�
−
�
i∈I

Tr
�
S
�C4bi

(Wk , βi, γi, κi)T�C4bi

�−�
k∈K

Tr(WkYk )

minimize
Wk,pj ,βi,γi,τi,

δi,ιi,κi,�φk,�ψj

−
�
k∈K

log2(�φk + σ2
nk

) −
�
j∈J

log2( �ψj) −�
k∈K

Tr
��∇Wk

�g1 + ∇Wk
�g2�HWk

�
+ Ξ

s.t. C1,C2,�C4a,�C4b,�C4c,�C4d,C5, C10: �φk ≤
�
r∈K

Tr(�gk�gHk Wr) +
�
j∈J

pj |ϕj,k|2 , ∀k,

C11: �ψj ≤�
t∈J

ptTr(�hj�hHj vjvHj ) + Tr
�
ηvjvHj Diag

��
k∈K

SWkSH
��

+ σ2
U �vj�2

, ∀j. (73)
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+
�
i∈I
�βi�
r∈K

Tr(�li�lHi Wr) −
�
k∈K
�ζk�
r∈K

Tr(�gk�gHk Wr)

−
�
i∈I

Tr
�
S
�C4ci

(Wk , pj,Ψ, γi, τi, δi)T�C4ci

�
−
�
j∈J
�ςjTr
�
ηvjvHj Diag

��
k∈K

SWkSH
��

+ Ο. (74)

Here, we have introduced Ο to collect all terms that do
not involve Wk . The scalar Lagrange multipliers ξ, �βi, �ζk,
and �ςj ≥ 0 are associated with constraints C1, �C4d, C10,
and C11, respectively. The positive semidefinite Lagrange
multiplier matrices T

�C4bi
∈ C(NT+1)×(NT+1), T

�C4ci
∈

C(M+1)×(M+1), and Yk ∈ CNT×NT are associated with
constraints �C4b, �C4c, and C5, respectively. The dual problem
of (73) is given by

maximize
T
�C4bi

,T
�C4ci

,Yk�0,

ξ,�βi,�ζk,�ςj≥0

minimize
Wk,pj ,βi,γi,τi,

δi,ιi,κi,�φk,�ψj

L. (75)

Next, by checking the Karush-Kuhn-Tucker (KKT) conditions
with respect to Wk, we investigate the structure of the optimal
W†

k of (75). Specifically, for W†
k, we have

K1: ξ†, �β†
i ,
�ζ†k, �ς†j ≥ 0, T†

�C4bi
,T†

�C4ci
,Y†

k � 0, (76)

K2: Y†
kW

†
k = 0, K3: ∇W†

k
L = 0, (77)

where ξ†, �β†
i , ζ†c , T†

�C4bi
, T†

�C4ci
, and Y†

k are the optimal
Lagrange multipliers for (75). Note that there exists at least
one ξ† > 0 since constraint C1 is active for optimal W†

k.
To facilitate the proof, K3 in (77) is explicitly expressed as
follows

Y†
k = ξ†INT − Δ†

k, (78)

where Δ†
k is given by

Δ†
k = ∇Wk

�g1(W†
k) + ∇Wk

�g2(W†
k) −

�
i∈I

EH
i T†

�C4bi
Ei

−
�
i∈I

CHΨFT†
�C4ci

FHΨHC−
�
i∈I
�β†
i
�li�lHi

+
�
k∈K
�ζ†k�gk�gHk +

�
j∈J
�ς†j ηvjvHj Diag(SSH). (79)

Next, by unveiling the structure of matrix Y†
k, we show that

the optimal W† always satisfies Rank(W†
k) ≤ 1. Denote the

maximum eigenvalue of matrix Δ†
k as νmax

Δ†
k

∈ R. We note
that due to the randomness of the channels, the probability
of having multiple eigenvalues with the same value νmax

Δ†
k

is

zero. Reviewing (78), if νmax
Δ†

k

> ξ†, then Y†
k � 0 does not

hold which contradicts K1. On the other hand, if νmax
Δ†

k

≤ ξ†,

then Y†
k is a positive semidefinite matrix with Rank(Y∗

k) ≥
NT − 1. Considering K2, this leads to Rank(W†

k) ≤ 1.
Next, we construct a bounded optimal solution based on
the above discussion. Specifically, we construct a unit-norm
vector emax

Δ†
k

∈ CNT×1 which lies in the null space of Y†
k,

i.e., Y†
ke

max
Δ†

k

= 0. Let emax
Δ†

k

be the unit-norm eigenvector asso-

ciated with the principal eigenvalue νmax
Δ†

k

of matrix Δ†
k. Thus,

the optimal W∗
k can be expressed as W†

k = �emax
Δ†

k

(emax
Δ†

k

)H .
Here, parameter � can be tuned such that the DL transmit
power constraint C1 is satisfied. �

B. Proof of Theorem 2

To start with, we define the objective function and the opti-
mal solution of problem (65) as �F (Θ) and Θ†, respectively.
Then, for any feasible Θ, we have the following inequality:

�F (Θ†) ≤ �F (Θ). (80)

We further define the objective function of problem (67)
as �G(Θ;χ). Assuming Θq minimizes �G(·;χq) with penalty
factor χq for each q, we have the following inequality:

�F (Θq) + χq
� �Θq�∗ − �Θq�2) = �G(Θq;χq)

≤ �F (Θ†) + χq(
!!Θ†!!

∗ −
!!Θ†!!

2
) = �G(Θ†;χq)

(a)
= �F (Θ†), (81)

where equality (a) holds due to the fact that any optimal
solution of (65), i.e., Θ†, fulfills

!!Θ†!!
∗ −
!!Θ†!!

2
≤ 0. Then,

we rearrange the inequality in (81) and obtain the following
inequality:

�Θq�∗ − �Θq�2 ≤ 1
χq

� �F (Θ†) − �F (Θq)
�
. (82)

Recall that if Θ is a limit point of the sequence {Θq}, we can
find an infinite subsequence Q such that

lim
q∈Q

Θq = Θ. (83)

Then, as q ∈ Q, q → ∞, we take the limit on both sides
of (82) and obtain the following relation chain:!!Θ!!∗ − !!Θ!!2 (b)

= lim
q∈Q

�Θq�∗ − �Θq�2

≤ lim
q∈Q

1
χq

� �F (Θ†) − �F (Θq)
� (c)

= 0, (84)

where equality (b) holds because of the continuity property of
norm functions and equality (c) holds due to χq → ∞. Thus,
we have that

!!Θ!!∗ − !!Θ!!2 = 0. As a result, Θ is a feasible
solution of problem (65).

On the other hand, for any χq ≥ 0, we take the limit of (81)
as i ∈ Q, q → ∞, which leads to the inequality:

�F (Θ)
(d)

≤ �F (Θ) + lim
q∈Q

χq(�Θq�∗ − �Θq�2) ≤ �F (Θ†),

(85)

where inequality (d) is due to the nonnegativity of the term
�Θq�∗ − �Θq�2. As Θ is a feasible point whose objective
value is no larger than that of the optimal solution Θ†, we con-
clude that Θ is also an optimal solution of problem (65),
as claimed. This completes the proof.
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Optimal Resource Allocation Design for Large
IRS-Assisted SWIPT Systems: A Scalable

Optimization Framework
Dongfang Xu , Graduate Student Member, IEEE, Vahid Jamali , Member, IEEE,

Xianghao Yu , Member, IEEE, Derrick Wing Kwan Ng , Fellow, IEEE,

and Robert Schober, Fellow, IEEE

Abstract— In this paper, we study the optimal resource allo-
cation algorithm design for large intelligent reflecting surface
(IRS)-assisted simultaneous wireless information and power
transfer (SWIPT) systems. To facilitate efficient system design
for large IRSs, instead of jointly optimizing all the IRS elements,
we partition the IRS into several tiles and employ a scalable
optimization framework comprising an offline design stage and
an online optimization stage. In the offline stage, the IRS elements
of each tile are jointly designed to support a set of different phase
shift configurations, referred to as transmission modes, while the
best transmission mode is selected from the set for each tile
in the online stage. Given a transmission mode set, we aim to
minimize the total base station (BS) transmit power by jointly
optimizing the beamforming and the transmission mode selection
policy taking into account the quality-of-service requirements of
information decoding and non-linear energy harvesting receivers,
respectively. Although the resource allocation algorithm design
is formulated as a non-convex combinatorial optimization prob-
lem, we solve it optimally by applying the branch-and-bound
(BnB) approach which entails a high computational complex-
ity. To strike a balance between optimality and computational
complexity, we also develop an efficient suboptimal algorithm
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capitalizing on the penalty method and successive convex approx-
imation. Our simulation results show that the proposed designs
enable considerable power savings compared to several baseline
schemes. Moreover, our results reveal that by properly adjusting
the numbers of tiles and transmission modes, the proposed
scalable optimization framework indeed facilitates online design
for large IRSs. Besides, our results confirm that the advocated
physics-based model and scalable optimization framework enable
a flexible trade-off between performance and complexity, which
is vital for realizing the performance gains promised by large
IRS-assisted communication systems in practice.

Index Terms— Branch and bound approach, optimal resource
allocation, intelligent reflecting surface, scalable optimization.

I. INTRODUCTION

NEXT-GENERATION wireless networks are envisioned to
offer sustainable high data-rate communication services.

To satisfy this demand, radio frequency (RF) transmission-
enabled simultaneous wireless information and power trans-
fer (SWIPT) has been proposed as a promising technique for
prolonging the lifetime of energy-constrained communication
systems [2], [3]. However, as the signal attenuation associated
with the path loss increases with the transmission distance,
the received power may not be adequate to ensure stable
operation of power-hungry devices, unless they are located
very close to the wireless energy transmitter [3]. Moreover, due
to the random nature of wireless channels, the performance
of SWIPT systems can be severely degraded when the radio
propagation environment is unfavorable. Indeed, these issues
can potentially jeopardize the provision of high data-rate and
sustainable communication services creating a performance
bottleneck for SWIPT systems.

To overcome these challenges, intelligent reflecting sur-
faces (IRSs) have been recently advocated for application
in SWIPT systems [4]–[7]. In particular, exploiting their
programmability, the IRS elements can be adjusted to reflect
the incident signal with a certain desired phase shift according
to the channel conditions [4], [8]. As a result, IRSs can be
intelligently configured to enhance the received power by
constructively combining the signals reflected by different
IRS elements at the desired energy harvesting receivers (ERs)
or alternatively destructively amalgamating the undesired

0090-6778 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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interference at the information decoding receivers (IRs). This
flexibility allows the system designer to customize a favor-
able radio propagation environment for performance improve-
ment [5]. Moreover, since IRSs comprise passive components
with low-power consumption, adding an IRS to the commu-
nication infrastructure does not lead to a significant addi-
tional energy burden [6], [7]. Inspired by these advantages,
several works have considered the combination of IRS and
SWIPT [9]–[11]. For instance, the authors of [9] studied the
joint design of the beamforming vector at the base station (BS)
and the discrete phase shift patterns of the IRS elements
for minimization of the BS transmit power in an IRS-aided
SWIPT system. Also, in [10], the authors considered an
IRS-enabled multiple-input multiple-output (MIMO) SWIPT
system and developed an alternating optimization (AO)-based
algorithm for maximization of the system spectral efficiency
while providing reliable wireless power transfer service to
multiple ERs. Besides, the authors of [11] proposed to jointly
optimize the phase shift matrix of the IRS and the beamform-
ing vectors at the BS for security provisioning in an IRS-aided
SWIPT system. However, the authors of [9] and [10] adopted
an overly-simplified energy harvesting (EH) model, in which
the harvested power of the ERs is linearly proportional to
the received RF power. In fact, according to practical field
measurements [12], [13], the linear EH model is only accurate
when the received RF power is constant. However, due to
the combination of the signals from the direct link and the
reflected link, which are both fading, the received RF power
at the ERs in IRS-assisted SWIPT systems usually has a larger
dynamic range than that in conventional SWIPT systems. As a
result, the schemes proposed in [9] and [10] may not pro-
vide satisfactory wireless power charging service for practical
ERs. On the other hand, the authors of [9]–[11] adopted an
element-wise optimization framework for IRS design such that
the computational complexity of the developed optimization
algorithms scales with the number of IRS elements. Hence,
these algorithms may not be efficient and scalable for online
optimization of large IRSs.

Nevertheless, in practice, the number of IRS phase shift
elements deployed in future wireless systems is expected to
be large. On the one hand, since the phase shifters are usually
sub-wavelength elements, a typical rectangular IRS naturally
consists of hundreds of elements due to its highly inte-
grated architecture [14]–[16]. For instance, the authors in [15]
designed and manufactured a 80 cm × 30 cm experimental
IRS system comprising 1,100 phase shift elements, while
an 1 m × 1 m large IRS prototype composed of 10,000 phase
shift elements was demonstrated in [16]. On the other hand,
even in free space propagation environments, the equivalent
path loss of the BS-IRS-receiver link is in general much larger
than that of the unobstructed direct link due to the double-path
loss effect [17]. Hence, to fully realize the potential of IRSs,
it is necessary to deploy a large number of phase shift elements
such that the severe end-to-end path loss of the cascaded
IRS channel can be compensated [18], [19]. However, with
the commonly adopted element-wise optimization framework,
both the computational complexity of the existing algorithms,
e.g., [10], [20], [21], and the required signaling overhead

grow with the number of IRS elements. As a result, with
the element-wise optimization framework, online design of
large IRSs may not be feasible in practice, which constitutes
a bottleneck for unleashing the full potential of IRSs in
wireless communication systems. Therefore, it is necessary
to develop an efficient and scalable optimization framework
that paves the way to real-time online design for practical
IRSs. To address this issue, recently, the authors of [22]
developed a physics-based IRS model and a corresponding tile
and transmission mode (TT)-based optimization framework.
In particular, they proposed to partition the set of IRS elements
into several subsets, referred to as tiles, and modeled the
impact of each tile on the effective end-to-end wireless channel
taking into account the incident angle, the reflection angle, and
the polarization of the electromagnetic wave. Subsequently,
they developed a scalable optimization framework comprising
an offline design stage and an online optimization stage.
In the offline stage, the IRS elements of each tile are jointly
designed to support a set of different transmission modes,
where each transmission mode effectively corresponds to a
given configuration of the phase shifts. To facilitate efficient
online design, the authors of [22] proposed a transmission
mode pre-selection criterion to refine the offline transmission
mode set. Then, in the online stage, the best transmission
mode is selected from the refined set according to the design
objective. With this new optimization framework, the com-
putational complexity needed for designing large IRSs scales
with two design parameters, namely, the number of tiles and
the size of the refined transmission mode set. To illustrate
this, the authors of [22] considered a multi-user IRS-assisted
multiple-input single-output (MISO) communication system
and developed two efficient algorithms based on respectively
AO and greedy approaches for minimization of the BS trans-
mit power subject to quality-of-service (QoS) constraints for
multiple IRs. However, these algorithms are not applicable
for the IRS-assisted SWIPT systems considered in this paper
due to the coexistence of IRs and ERs and the non-linearity
of practical EH models. Moreover, both the AO-based algo-
rithm and the three-step greedy algorithm developed in [22]
are suboptimal algorithms, while optimal algorithms for the
TT-based optimization framework have not been investigated
in the literature, yet. Furthermore, the authors of [22] took
into account neither user fairness nor the specific nature of the
underlying resource allocation problem for transmission mode
pre-selection. As a result, the schemes proposed in [22] may
not be able to fully exploit the benefits of TT-based IRS opti-
mization. Besides, the impact of the two tunable parameters,
i.e., the number of tiles and the number of the transmission
modes, on the computational complexity of the optimization
algorithms and the performance of the IRS-assisted system has
not be comprehensively investigated in [22].

In this paper, we address the above issues. The contributions
of this paper can be summarized as follows:

• We formulate the optimal resource allocation algorithm
design for large IRS-assisted SWIPT systems as a non-
convex optimization problem which is based on a realistic
non-linear EH model for the ERs and a physics-based IRS
model.
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• We study a TT-based scalable two-stage optimization
framework comprising an offline design stage and an
online optimization stage. To facilitate efficient online
design of IRS-assisted SWIPT systems, we develop two
new transmission mode pre-selection criteria to refine the
offline transmission mode set.

• Based on the refined transmission mode set, we jointly
optimize the BS beamforming and IRS transmission
mode selection policy for minimization of the total trans-
mit power under QoS constraints for both the IRs and
the ERs. Although the resulting problem is a non-convex
mixed-integer optimization problem, we solve it opti-
mally by exploiting a branch-and-bound (BnB) approach
and obtain the optimal online joint beamforming and
transmission mode selection strategy.

• Since the optimal scheme entails a high computational
complexity, we develop a computationally efficient sub-
optimal algorithm by capitalizing on the penalty method,
successive convex approximation (SCA), and semidef-
inite relaxation (SDR). This algorithm asymptotically
converges to a locally optimal solution of the considered
problem.

• Simulation results show that the performance of the
proposed suboptimal scheme closely approaches that
of the proposed optimal scheme. Moreover, our results
reveal that the proposed optimal and suboptimal schemes
entail much lower power consumption compared to three
baseline schemes. Furthermore, our results unveil that
by properly tuning the number of tiles and the number
of the transmission modes, we can strike a balance
between computational complexity and system perfor-
mance. Besides, we verify that the proposed scalable
optimization framework indeed facilitates the efficient
online optimization of large IRSs.

The remainder of this paper is organized as follows.
In Section II, we introduce the considered IRS-assisted SWIPT
system model. In Section III, we first present the adopted
TT-based optimization framework, and then develop several
transmission mode pre-selection criteria and formulate the
online resource allocation optimization problem for the consid-
ered system. The optimal and suboptimal online joint beam-
forming and transmission mode selection algorithm designs
are provided in Sections IV. In Section V, simulation results
are presented, and Section VI concludes the paper.

Notation: In this paper, boldface lower case and bold-
face capital letters denote vectors and matrices, respectively.
1L denote the all-ones vector of length L. CN×M denotes
the space of N × M complex-valued matrices. HN denotes
the set of all N -dimensional complex Hermitian matrices.
IN refers to the N ×N identity matrix. | · | and || · ||2 denote
the absolute value of a complex scalar and the l2-norm of a
vector, respectively. AH stands for the conjugate transpose of
matrix A. A � 0 indicates that A is a positive semidefinite
matrix. Rank(A) and Tr(A) denote the rank and the trace
of matrix A, respectively. exp(x) represents the exponential
function of a real-valued scalar x. E {·} denotes statistical

expectation. ∼ and
Δ= stand for “distributed as” and “defined

as”, respectively. The distribution of a circularly symmetric

Fig. 1. An IRS-aided SWIPT system comprising one multi-antenna base
station (BS), K = 2 information decoding receivers (IRs), and J = 2 energy
harvesting receivers (ERs). To facilitate efficient online design, the large IRS
is partitioned into T = 8 tiles of equal size, as indicated by the red-colored
dotted boxes. The direct links and the reflected links between the base station
and the receivers are denoted by orange solid lines and blue dashed lines,
respectively.

complex Gaussian random variable with mean μ and variance
σ2 is denoted by CN (μ, σ2). x∗ denotes the optimal value of
optimization variable x. The gradient vector of function L(x)
with respect to x is denoted by ∇xL(x).

II. SYSTEM MODEL

We consider an IRS-assisted SWIPT system. The system
comprises a BS, K IRs, and J ERs, cf. Figure 1. In particular,
the BS is equipped with NT antennas while all receivers
are single-antenna devices. Based on the received signal,
the IRs decode the message transmitted by the BS, while
the ERs harvest the received power. To enhance the system
performance, a large IRS comprising M phase shift elements
is deployed to assist the BS in providing SWIPT services for
the two sets of receivers. For notational simplicity, we define
sets J = {1, · · · , J} and K = {1, · · · , K} to collect the
indices of the ERs and IRs, respectively.

A. Signal Model

In a given scheduling time slot, the BS transmit signal is
given by

x =
�
k∈K

wkdk + v, (1)

where wk ∈ CNT×1 and dk ∈ C denote the beam-
forming vector for IR k and the corresponding information
symbol, respectively. Without loss of generality, we assume
E{|dk|2} = 1, ∀k ∈ K. Moreover, v is generated as a Gaussian
pseudo-random sequence which is utilized to provide wireless
power transfer service for ERs and is known to both the IRs
and ERs [3], [23]. In particular, v is modeled as

v ∼ CN (0,V) , (2)

where V � 0, V ∈ HNT , denotes the covariance matrix of
the pseudo-random energy signal.
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In each scheduling time slot, the received signals at IR k
and ER j are given by

yI,k = hH
I,kwkdk� �� �

desired signal

+hH
I,k

�
r∈K\{k}

wrdr� �� �
multiuser interference

+ hH
I,kv� �� �

energy signal

+nI,k, (3)

yE,j = hH
E,j

��
k∈K

wkdk + v

�
+ nE,j , (4)

respectively. Here, variables nI,k ∼ CN (0, σ2
Ik

) and nE,j ∼
CN (0, σ2

Ej
) denote the additive white Gaussian noise with

variance σ2
Ik

and σ2
Ej

at IR k and ER j, respectively. Moreover,
vectors hI,k and hE,j respectively denote the effective BS-IRk

and BS-ERj channels which are the superpositions of the
channels of the direct and IRS-assisted links, i.e.,

hI,k = hI,k,R + hI,k,D and hE,j = hE,j,R + hE,j,D. (5)

Here, hI,k,R and hE,j,R are the IRS-assisted BS-IRk and
BS-ERj channels, respectively, and hI,k,D and hE,j,D denote
the channels of the corresponding direct links. Further details
regarding the adopted channel models are presented in
Section III-A. Besides, to investigate the maximum achiev-
able performance, similar to [24], [25], we assume that the
perfect channel state information (CSI) of the entire system is
available at the BS.1

B. Non-Linear Energy Harvesting Model

Most existing works on IRS-assisted SWIPT systems
adopted a linear EH model [10], [28]. However, this model is
not accurate as the RF energy conversion efficiency depends
on the input RF power level of the EH circuit. To capture
this effect, in this paper, we adopt the non-linear EH model
proposed in [29]. In particular, the energy harvested by ER j,
i.e., ΥEH

j , is modeled by

ΥEH
j =

Λj − ajΞj

1 − Ξj
, Ξj =

1
1 + exp(�jcj)

, (6)

Λj =
aj

1 + exp
	
−�j

	
PER

j − cj



 , (7)

where Λj is a logistic function whose input is the received
RF power PER

j at ER j, and constant Ξj ensures a zero-
input/zero-output response. Besides, aj , cj , and �j are constant
parameters that depend on the employed EH circuit. Given the
schematic of the EH circuit, these parameters can be easily
determined via some standard curve fitting method [29].

III. A SCALABLE OPTIMIZATION FRAMEWORK FOR

IRS-ASSISTED SWIPT SYSTEMS

In this section, we first present the adopted IRS model which
enables a scalable optimization of large IRSs. To facilitate

1We note that the channel estimation schemes developed for IRS-assisted
systems, e.g., [26], [27], can also be applied for the tile-based IRS considered
in this paper. For example, the effective end-to-end channel between the
BS and information decoding receiver k, i.e., hI,k,s,t, can be estimated by
employing the ON/OFF channel estimation protocol proposed in [26], where
hI,k,s,t, t = 1, · · · , T , are estimated one-by-one by switching one tile of the
IRS on at a time. As a result, the CSI of the considered large IRS-assisted
SWIPT systems can be accurately estimated.

an efficient online design for larger IRSs, we also develop
two new transmission mode pre-selection criteria for large
IRS-assisted SWIPT systems. At last, after introducing the
adopted performance metrics, we formulate the resource allo-
cation design as an optimization problem.

A. End-to-End IRS Channel Model Based on TT Framework

In the following, we adapt the TT-based optimization frame-
work recently developed in [22] to the considered IRS-assisted
SWIPT system. We first briefly present the general form of the
TT-based framework and then specialize it to the case where
a physics-based model is used to characterize the wireless
channel and the IRS. Finally, we discuss why this framework
enables scalable optimization.

1) TT Framework: In practice, optimizing the individual
phase shift elements may not be affordable for online design of
large IRSs. To address this issue, in the TT framework, i) the
large IRS is partitioned into T tiles of equal sizes2 and ii) a set
of S phase shift configurations for all IRS elements of each tile
is designed offline [22], [30]. Throughout this paper, we refer
to the phase shift configurations as transmission modes and
employ the same set of transmission modes for all IRS tiles.
Let hI,k,s,t,R and hE,j,s,t,R denote the end-to-end BS-IRk and
BS-ERj channels of tile t, respectively, which are realized by
transmission mode s. Then, hI,k,R and hE,j,R are given by,
respectively,

hI,k,R =
�
s∈S,
t∈T

bs,thI,k,s,t,R and hE,j,R =
�
s∈S,
t∈T

bs,thE,j,s,t,R,

(8)

where sets S = {1, · · · , S} and T = {1, · · · , T } collect
the indices of the transmission modes and tiles, respectively.
Furthermore, bs,t ∈ {0, 1} is a binary variable with bs,t = 1 if
tile t employs transmission mode s, ∀s ∈ S, ∀t ∈ T ; otherwise
it is equal to zero. Constraint

�
s∈S

bs,t = 1, ∀t, has to hold

since only one transmission mode can be selected for each
tile. Note that for a given set of transmission modes, channel
vectors hI,k,s,t,R and hE,j,s,t,R are fixed. However, unlike
conventional systems, we can choose among ST possible end-
to-end IRS-assisted channels by optimizing bs,t.

For ease of presentation and without loss of generality,
we model the direct link via a virtual tile indexed by
t = 0 and rewrite hI,k,D as hI,k,D =

�
s∈S

bs,0hI,k,s,0 with

hI,k,s,0 = hI,k,D, ∀s. By doing so, we can simplify the
notation by dropping the subscripts R and D in all the channel
vectors. We note that for ER j, channel vector hE,j,D can
be defined in a similar manner as hI,j,D. As a result, the
effective end-to-end BS-IRk and BS-ERj channels can be

2T is a tunable parameter and one can determine its value based on the
specific system requirements. For instance, if low complexity of the online
optimization algorithms is important, a relatively small value of T is favorable.
On the other hand, if high performance is the main concern, the large IRS
should be partitioned into a large number of tiles. Similarly, we can also
tune the value of S to adjust the tradeoff between system performance and
complexity.
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rewritten as, respectively,

hI,k =
�
s∈S,

t∈�T

bs,thI,k,s,t and hE,j =
�
s∈S,

t∈�T

bs,thE,j,s,t, (9)

where �T = T ∪ {0}.
2) Physics-Based Model: We assume that the wireless envi-

ronment consists of multiple scatterers, where each scatterer
contributes a single propagation path [22], [31]. Hence, the
signal transmitted by the BS will arrive at the IRS via multiple
paths, and the signal reflected by the IRS will arrive at a given
receiver via multiple paths. To fully unleash the potential of the
IRS, it is crucial to reflect the signal along strong paths in order
to ensure sufficient link budget especially when the direct links
suffer from severe shadowing. Motivated by this discussion,
instead of modeling the IRS tiles in terms of the reflection
coefficients of all individual reflecting elements, we model the
tile for each transmission mode in terms of its response for
all angles of arrival (AoAs) corresponding to the paths in the
BS-IRS link and angles of departure (AoDs) corresponding
to the paths in the IRS-receiver link. In particular, for tile
t employing transmission mode s, the effective end-to-end
channel between the BS and IR k, i.e., hI,k,s,t, is given by [22]

hH
I,k,s,t = 1H

I,k,RCI,k,RRI,k,s,tCTDT, ∀t ∈ T . (10)

Here, 1I,k,R ∈ CLI,k,R×1 is an all-ones vector, and DT ∈
CLT×NT is a matrix representing the BS antenna array
response of the BS-IRS link. LT and LI,k,R denote the
numbers of scatterers of the BS-IRS and IRS-IRk links,
respectively. Moreover, diagonal matrices CT ∈ CLT×LT and
CI,k,R ∈ C

LI,k,R×LI,k,R contain the channel coefficients which
capture the joint impact of path loss, shadowing, and small-
scale fading on the BS-IRS and IRS-IRk links, respectively.
Furthermore, matrix RI,k,s,t ∈ C

LI,k,R×LT denotes the
response function of tile t applying the s-th transmission mode
evaluated at the AoAs of the BS-IRS link and the AoDs of
the IRS-IRk link. We note that for each channel realization,
RI,k,s,t is fixed for a given transmission mode and depends
on the channel AoAs and AoDs, see [22, Eq. (26)] and
[32, Eq. (5)]. In other words, different transmission modes
realize different RI,k,s,t and consequently different end-to-end
channels hI,k,s,t.

Remark 1: We note that the physics-based model in (10)
is a more general and more accurate model compared to
the widely adopted conventional IRS model [24], [33], [34].
On the one hand, by setting T equal to the number of IRS
elements M and mapping the entire phase shift domain to
the transmission mode set, the conventional IRS model can
be regarded as a special case of the IRS model considered
in this paper. On the other hand, unlike the conventional IRS
model, which over-optimistically assumes a constant gain for
all signals reflected by the IRS, the physics-based model takes
into account the impact of the incident and reflection angles of
the impinging electromagnetic waves on the reflected signals
when determining the corresponding gain.

Assuming a scatterer-based wireless environment, the
channel vector of the direct link between the BS and

IRk is given by [22]

hH
I,k,0 = 1H

I,k,DCI,k,DDI,k,D, (11)

where 1I,k,D ∈ CLI,k,D×1 is an all-ones vector, DI,k,D ∈
CLI,k,D×NT is a matrix containing the BS antenna array
vectors of the BS-IRk direct link, CI,k,D ∈ CLI,k,D×LI,k,D

is a diagonal matrix whose diagonal entries are the channel
coefficients of the scatterers in the BS-IRk direct link, and
LI,k,D denotes the number of scatterers of the BS-IRk direct
link. The BS-ERj channel realized via tile t for transmission
mode s, i.e., hE,j,s,t, and the BS-ERj direct channel hE,j,0

are modeled similar to hI,k,s,t and hI,k,0 in (10) and (11),
respectively.

Remark 2: We note that this paper focuses on slowly
time-varying fading channels such that the coherence time
of the considered system is larger than the duration of a
scheduling frame. Moreover, we assume the perfect CSI of
all channels is available at the BS and the AoAs and AoDs
of the scatterers are known for resource allocation design.
On the other hand, in practice, channel estimation errors and
AoA and AoD estimation errors (caused, e.g., by mobile
scatterers) are unavoidable. To mitigate the impact of these
errors, the algorithms developed in this paper can be
extended by applying concepts from robust optimization,
e.g., [3], [35], [36]. However, this is beyond the scope
of this paper but constitutes an interesting topic for
future work.

3) Two-Stage Scalable Optimization Framework: IRS opti-
mization based on (8) and (10) is performed in two stages,
namely an offline stage and an online stage. i) In the offline
stage, the set of transmission modes is designed which deter-
mines the set of potential end-to-end channels that each tile
can create for a given channel realization. ii) In the online
stage, the best transmission mode is chosen for each tile
depending on the design objective of the considered systems.
The scalability of this TT framework stems from the fact that
the computational complexity for online IRS optimization is
untied from the number of IRS elements M , but scales with
the number of tiles T and the number of transmission modes
S which are design parameters and can be adjustable to trade
performance for complexity. The authors of [22] and [32] have
studied the offline transmission mode design and developed a
corresponding simple pre-selection criterion, and the proposed
transmission mode sets are also applicable to the IRS-assisted
SWIPT systems considered here. Therefore, in this paper,
we focus our attention on the online algorithm design as well
as novel transmission mode pre-selection criteria. We empha-
size that the transmission mode pre-selection criteria and the
online optimization algorithms developed in this paper are
applicable for any offline transmission mode set. In Figure 2,
we illustrate the key steps of the adopted scalable optimization
framework. The green and blue colored boxes indicate the
main foci of the paper.

B. Transmission Mode Pre-Selection for Online Optimization

In this paper, we employ the offline transmission mode set
that is generated according to [22, Section III-A] for online
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Fig. 2. Illustration of key steps of the proposed scalable optimization framework.

optimization of the considered system. However, it has been
shown in [22], that for a given radio propagation environment,
not all the elements in the offline transmission mode set
will contribute to a system performance enhancement. Hence,
instead of directly employing the offline transmission mode
set for online resource allocation, it is advisable to first refine
the transmission mode set to facilitate a more computationally
efficient online optimization. To this end, in the following,
we first present the simple transmission mode pre-selection
criterion proposed in [22]. Then, we develop two new criteria
that take into account user fairness and the specific character-
istics of SWIPT systems, respectively.

For the effective end-to-end channel in (10), a given channel
realization does not only depend on the channel coefficients
of the links but also on the locations of the scatterers. Since
the number of scatterers is limited and the locations of the
scatterers are fixed, the IRS can exploit only a limited number
of AoAs and AoDs to receive the signals from the BS and to
reflect the signals to the receivers. As a result, only a limited
number of transmission modes are suitable candidates for
reflecting the signal impinging from one of the scatterers/BS
to one of the other scatterers/receivers [22], [32]. Thus, for
a given BS-receiver pair, the Euclidean norm of the channel
vector, i.e., �hI,k,s,t�2 or �hE,j,s,t�2, is non-negligible only
for a few of the transmission modes contained in the offline
transmission mode set. Thus, to facilitate online optimization
for practically large IRS-assisted SWIPT systems, we propose
to first pre-select a subset of the transmission modes from the
set generated in the offline design stage.

The authors of [22] developed a simple and straightforward
transmission mode pre-selection criterion which chooses the
transmission modes that yield the largest effective end-to-end
channel gain, i.e., the largest Euclidean norm of the channel
vector. In particular, the desired refined transmission mode set
can be obtained as follows

Criterion 1: SR1 =


s|∃(r, i, t) : �hr,i,s,t�2 ≥ δ1,
r = I, i ∈ K
r = E, i ∈ J

�
, t ∈ T

�
, (12)

where δ1 > 0 is a tunable threshold which can be used to
adjust the size of set SR1 . Although Criterion 1 is simple
to implement, it does not take into account user fairness
and may lead to a biased refined transmission mode set

that is favorable only for one IR or one ER. In fact, if the
channel state of one receiver is much better than that of the
other receivers, it is possible that most of the phase-shift
configurations in the refined transmission mode set are only
favorable for this receiver. To circumvent this issue, we can
construct an improved transmission mode set by pre-selecting
a few favorable phase-shift configurations for each receiver.
Specifically, the transmission mode set for a given receiver is
constructed as follows

Criterion 2: SR2,r,i =
�
s | ∃t : �hr,i,s,t�2 ≥ δ2,r,i, t ∈ T

�
,

r = I, i ∈ K
r = E, i ∈ J , (13)

where δ2,r,i > 0 is a parameter to adjust the size of set SR2,r,i

and the total set in this case is given by SR2 =
�
r,i

SR2,r,i .

Apart from the aforementioned criteria, one can also pre-
select transmission modes based on the specific resource
allocation optimization objective. Considering the fact that in
SWIPT systems, the ERs usually require much higher received
powers than the IRs, we can refine the transmission mode set
by keeping those transmission modes that are favorable for the
ERs, which facilitates minimization of the BS transmit power
while providing satisfactory service for both IRs and ERs.
This can be achieved by imposing weights on the effective
end-to-end channels of the ERs. To this end, the transmission
mode set for receiver i is constructed based on the following
weight criterion

Criterion 3: SR3 = {s | ∃(r, i, t) : pr,i,s,t ≥ δ1, t ∈ T } , (14)

where variable pr,i,s,t is defined as

pr,i,s,t =


ω �hr,i,s,t�2 , r = E, ∀i ∈ J
�hr,i,s,t�2 , r = I, ∀i ∈ K . (15)

Here, ω > 1 is the weight factor to be used to prioritize the
ERs such that the resulting set is more favorable for ERs.
For ω = 1, Criterion 3 is identical to Criterion 1. Note
that which one of the three transmission mode pre-selection
criteria is adopted does not affect the online resource allocation
algorithm design.
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C. Optimization Problem Formulation

The received signal-to-noise-plus-interference ratio (SINR)
of IR k, i.e., Γk is given by3

Γk =

���hH
I,kwk

���2
hH

I,k

	 �
r∈K\{k}

wrwH
r + V



hI,k + σ2

Ik

. (16)

Furthermore, the received RF power at ER j, i.e., PER
j ,

is given by

PER
j = hH

E,j

��
k∈K

wkwH
k + V

�
hE,j. (17)

In this paper, we aim to minimize the total transmit power
at the BS while satisfying the QoS requirements of the
IRs and the EH requirements of the ERs.4 In particular,
for a given refined transmission mode set5 SR, the joint
optimal beamforming and transmission mode selection pol-
icy, i.e., {wk,V, bs,t}, is obtained by solving the following
optimization problem6

minimize
V∈H

NT ,wk,bs,t

�
k∈K

�wk�2
2 + Tr(V)

s.t. C1: Γk ≥ Γreqk
, ∀k, C2: ΥEH

j ≥ Ereqj
, ∀j,

C3: V � 0, C4: bs,t ∈ {0, 1} , ∀s ∈ SR, ∀t ∈ �T ,

C5:
�

s∈SR

bs,t = 1, ∀t ∈ �T . (18)

Here, Γreqk
in constraint C1 is the pre-defined minimum

required SINR of IR k. Constraint C2 indicates that the
minimum harvested power at ER j should be greater than
a given threshold Ereqj

. Constraint C3 and V ∈ HNT restrict
matrix V to be a positive semidefinite Hermitian matrix such
that it is a valid covariance matrix. Constraints C4 and C5 are

3Since the pseudo-random energy signal v is perfectly known at all receivers
in principle, it is possible to cancel the interference at the IRs. In this case,
the energy signal-induced interference at IR k, i.e., hH

I,kVhI,k , is absent
in the expression for the SINR in (16) [23]. On the other hand, applying
interference cancellation increases receiver complexity, of course. Without
loss of generality, in this paper, we assume that the IRs do not cancel the
energy signal-induced interference. Nevertheless, we note that with proper
modifications the algorithms developed in this paper are also applicable to the
case where cancellation of the energy signal-induced interference is possible.

4In practice, apart from the IRs and ERs considered in this paper, SWIPT
systems may comprise another type of receiver, i.e., hybrid information and
EH receivers [3]. In particular, according to a given power splitting ratio,
hybrid receivers split the received signal into two parts, one for EH and one for
information decoding. We note that for hybrid information and EH receivers
with a given fixed power splitting ratio, the problem formulation for resource
allocation is essentially identical to (18). As a result, the proposed optimal and
suboptimal resource allocation algorithms can also be applied to IRS-assisted
SWIPT system employing hybrid information and EH receivers.

5For notational simplicity, in the remainder of the paper, we omit the
subscripts of the refined transmission mode sets and use SR and SR to denote
the set employed for online resource allocation and its cardinality, respectively.

6In practice, the total transmit power, i.e.,
�

k∈K
�wk�2 + Tr(V), has to

be smaller than or equal to the maximum possible transmit power of the BS,
i.e., Pmax. However, since, in this paper, the objective of resource allocation
is to minimize the total transmit power of the BS, imposing such a constraint in
the problem formulation is not necessary. In fact, after solving the considered
optimization problem in (18), we can check if the corresponding objective
function value is smaller than or equal to Pmax. If this is not the case, then
the obtained solution cannot be realized.

imposed since only one transmission mode can be selected for
each tile.

The problem in (18) is a mixed-integer non-convex opti-
mization problem. Although (18) is still challenging to solve
due to the non-convexity stemming from the coupling of the
optimization variables, the fractional function in constraint
C1, and the binary selection constraint in C4, we sidestep
the unit-modulus constraint of the optimization problems
formulated in [9]–[11] based on the conventional element-
wise optimization framework. This allows us to leverage the
plethora of algorithms developed for integer programming
problems to preserve joint optimality rather than solely rely-
ing on AO-based algorithms. Therefore, in the next section,
we develop a BnB-based algorithm to obtain the globally opti-
mal solution of problem (18) which serves as a performance
benchmark. Since the BnB-based algorithm entails a high com-
putational complexity, we also develop a suboptimal scheme
which has only polynomial time computational complexity.

IV. SOLUTION OF THE PROBLEM

In this section, we first tackle the coupling of the optimiza-
tion variables by employing the Big-M formulation [37]. Then,
a BnB-based algorithm is proposed to solve the optimization
problem in (18) optimally leading to an iterative resource
allocation algorithm. In each iteration, a non-convex opti-
mization problem is solved optimally by SDR. Subsequently,
we develop a suboptimal solution based on SCA which
asymptotically converges to a locally optimal solution of the
considered optimization problem in polynomial time.

A. Problem Transformation

To facilitate resource allocation algorithm design, we first
handle the coupling of the optimization variables by defining
Wk = wkwH

k , ∀k. Considering the channel vectors hI,k

and hE,j defined in (9), we note that (16) and (17) contain
cross-terms bs,tbp,q, ∀s, p ∈ SR, ∀t, q ∈ �T . For handling
this coupling, we define new optimization variable βs,t,p,q =
bs,tbp,q. Since bs,t and bp,q are binary variables, we apply the
Big-M formulation to represent βs,t,p,q = bs,tbp,q equivalently
in terms of the following convex constraints

C6a: 0 ≤ βs,t,p,q ≤ 1, C6b: βs,t,p,q ≤ bs,t, (19)

C6c: βs,t,p,q ≤ bp,q, C6d: βs,t,p,q ≥ bs,t + bp,q − 1. (20)

Then, we insert hI,k and hE,j defined in (9) back into (16)
and (17) and rewrite the SINR of IR k and the received RF
power at ER j as follows, respectively,

Γk =

�
s∈SR,

t∈�T

�
p∈SR,

q∈�T

βs,t,p,qhH
I,k,s,tWkhI,k,p,q

�
s∈SR,

t∈�T

�
p∈SR,

q∈�T

βs,t,p,qhH
I,k,s,t

⎛⎜⎝�
r∈K
r �=k

Wr+V

⎞⎟⎠hI,k,p,q+ σ2
Ik

,

(21)

PER
j =

�
s∈SR,

t∈�T

�
p∈SR,

q∈�T

βs,t,p,qhH
E,j,s,t

��
k∈K

Wk + V

�
hE,j,p,q.

(22)
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We note that there are still coupled optimization variables
in (21) and (22), i.e., βs,t,p,qWk and βs,t,p,qV. To overcome
this difficulty, we again apply the Big-M formulation. In par-
ticular, we define new optimization variables �Wk,s,t,p,q =
βs,t,p,qWk and �Vs,t,p,q = βs,t,p,qV to decompose the
product terms by imposing the following additional convex
constraints7:

C7a: �Wk,s,t,p,q � βs,t,p,qP
maxINT , (23)

C7b: �Wk,s,t,p,q � Wk − (1 − βs,t,p,q)PmaxINT , (24)

C7c: �Wk,s,t,p,q � Wk, C7d: �Wk,s,t,p,q � 0, (25)

C8a: �Vs,t,p,q � βs,t,p,qP
maxINT , (26)

C8b: �Vs,t,p,q � V − (1 − βs,t,p,q)PmaxINT , (27)

C8c: �Vs,t,p,q � V, C8d: �Vs,t,p,q � 0. (28)

Then, constraints C1 and C2 can be respectively recast as
constraints �C1 and �C2, as shown at the bottom of the
page. Here, constant Creqj

in �C2 is defined as Creqj
=

( aj

Ereqj
(1−Ξj)+ajΞj

− 1)exp(−�jcj).
Then, we recast the optimization problem in (18) as follows

minimize
Wk,�Wk,s,t,p,q∈H

NT ,

V,�Vs,t,p,q∈H
NT ,

bs,t,βs,t,p,q

�
s∈SR,

t∈�T

�
p∈SR,

q∈�T

Tr

��
k∈K

�Wk,s,t,p,q+ �Vs,t,p,q

�

s.t. �C1,�C2, C3-C5, C6a-C6d, C7a-C7d,

C8a-C8d, C9: Rank(Wk) ≤ 1, ∀k, (31)

where Wk ∈ HNT and the rank-one constraint C9 are
imposed to guarantee that Wk = wkwH

k holds after opti-
mization. We note that the binary constraint in C4 and rank-
one constraint C9 are still obstacles to solving problem (31).
Nevertheless, in the next subsection, we develop a BnB-based
algorithm to optimally solve (31).

B. Optimal Resource Allocation Scheme

The BnB approach is a promising systematic partial enumer-
ation strategy to optimally solve discrete and combinatorial
optimization problems. Given an optimization problem with
a finite number of binary optimization variables, BnB-based
algorithms are guaranteed to terminate at the globally optimal
solution in a finite number of iterations [40]. BnB algorithms
have been widely adopted to optimally solve communication

7Here, Pmax is used only to establish an upper bound for the new
optimization variables �Wk,s,t,p,q and �Vs,t,p,q [38], [39]. Replacing Pmax

with an arbitrarily large constant serves the same purpose.

resource allocation problems involving binary variables such
as optimal user scheduling [41] and optimal subcarrier assign-
ment [42]. Thanks to the series of transformations applied
in Section IV-A, the reformulated equivalent problem in (31)
is in the canonical form that allows the application of the
BnB concept to develop an optimal algorithm.8 The basic
principle of BnB-based algorithms is to exploit a tree traversal
where the feasible set of the main problem is mapped to
the root. BnB-based algorithms explore all branches of the
tree, where each node of the tree represents a subset of
the solution set. For each node, a subproblem based on the
corresponding subset is formulated and both an upper bound
and a lower bound are constructed. These bounds are then
utilized to check the optimality of a given subproblem. A node
is discarded if it cannot produce a better solution than the
current best solution found by the algorithm. Based on a pre-
defined node selection strategy, the tree traversal proceeds
by selecting and branching one node into two new nodes
in each iteration of the BnB-based algorithm. As the tree
structure continues to expand, the feasible set is progressively
partitioned into smaller subsets and the current best solution is
updated leading to improved objective values in the course of
the iterations. Following the above procedure, the gap between
the upper bound and the lower bound gradually vanishes
in each iteration and the BnB-based algorithm converges to
the globally optimal solution of the considered optimization
problem. In this subsection, we present the construction of
the bounds, the partition rule, and the branching strategy for
the problem in (31), and then develop the optimal resource
allocation algorithm.

1) Lower and Upper Bounds: We denote the search space
of the proposed BnB-based algorithm as B, where B is the
product of ST binary sets. In particular, B is given by B =�
s∈SR

�
t∈T

Bs,t, where Bs,t
Δ= {0, 1}, ∀s, t. Then, we define a

continuous optimization variable 0 ≤ �bs,t ≤ 1 and rewrite
optimization problem (31) as a binary-optimization-variable-
relaxed optimization problem in (32), as shown at the bottom
of the next page. Here, the new optimization variables �βs,t,p,q,�Wk,s,t,p,q, and �Vs,t,p,q are defined as �βs,t,p,q = �bs,t

�bp,q,

8Note that the proposed scalable optimization framework allows us to
flexibly tune T and SR, which determines the number of optimization
variables bs,t. On the other hand, the number of nodes in the BnB search
tree is proportional to the number of optimization variables bs,t. As a result,
the choice of T and SR directly influences the complexity of the proposed
BnB-based optimal algorithm. This dependence facilitates the efficient online
design of large IRS-assisted wireless systems. Note that other global opti-
mization algorithms, such as McCormick envelope algorithm [43], may also be
considered for optimally solving the considered optimization problem in (18).

�C1:
1

Γreqk

�
s∈SR,

t∈�T

�
p∈SR,

q∈�T

Tr
	
hI,k,p,qhH

I,k,s,t
�Wk,s,t,p,q



−

�
s∈SR,

t∈�T

�
p∈SR,

q∈�T

Tr
�
hI,k,p,qhH

I,k,s,t

	�
r∈K
r �=k

�Wr,s,t,p,q + �Vs,t,p,q


�
≥ σ2

Ik
, (29)

�C2:Creqj
≥ exp

�
− �j

�
s∈SR,

t∈�T

�
p∈SR,

q∈�T

Tr
	
hE,j,p,qhH

E,j,s,t(
�
k∈K

�Wk,s,t,p,q + �Vs,t,p,q)

�

, ∀j, (30)

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on July 07,2022 at 09:58:23 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: OPTIMAL RESOURCE ALLOCATION DESIGN FOR LARGE IRS-ASSISTED SWIPT SYSTEMS 1431

�Wk,s,t,p,q = �βs,t,p,qWk, and �Vs,t,p,q = �βs,t,p,qV,
respectively. We note that constraint �C4 is a continuous
relaxation of binary constraint C4. In general, solving the
optimization problem in (32) may yield a non-binary solu-
tion. As a result, the optimal solution of the constraint-
relaxed problem in (32), i.e., (�b∗s,t,W

∗
k,V∗), provides a

lower bound for (31) which is denoted by FL(�b∗s,t,W
∗
k,V∗).

However, to optimally solve (32), we still need to circum-
vent the non-convexity stemming from the unit-rank con-
straint C9. For handling this issue, we employ SDR and
remove constraint C9. The rank-relaxed version of (32) is
a convex optimization problem and can be efficiently solved
by standard solvers such as CVX [44]. Next, we show
the tightness of the relaxation by introducing the following
theorem.

Theorem 1: For given Γreqk
> 0, the optimal solution

W∗
k of the relaxed problem (32) always satisfies Rank

(W∗
k) = 1, ∀k.
Proof: Please refer to the Appendix. �

On the other hand, we can also obtain an upper bound
of (31) based on the solution produced by (32). In particular,
by relaxing the binary constraint and optimally solving the
relaxed version of (32), we obtain the optimal solution �b∗s,t,
where 0 ≤ �b∗s,t ≤ 1, ∀s, t. Then, based on �b∗s,t, we construct
a binary solution for the optimization problem in (31) by
rounding each �b∗s,t to either 0 or 1. In particular, for ∀t ∈ T ,
we round the variable �b∗s,t with index s† to 1, where s† is
given by

s† = arg max
s∈SR

�b∗s,t, ∀t ∈ T . (33)

Then, we set all the other �b∗s,t to 0, ∀t ∈ T , and denote
the rounded solution by bs,t. We note that given the opti-
mal solution W∗

k and V∗ of (32), the rounded solution
bs,t may violate the constraints of (31) and cause infea-
sibility. Hence, we insert the rounded solution bs,t back
into (31) and solve the rank-relaxed version of (31) for the

optimal solution W∗∗
k and V∗∗.9 Then, we can obtain the

corresponding upper bound of the objective function value
FU(bs,t,W∗∗

k ,V∗∗). Now, we have acquired both a lower
bound and an upper bound for the optimization problem
in (31).

2) Partitioning Rule and Branching Strategy: In each iter-
ation of the BnB algorithm, we select a node in the search
tree and branch the corresponding parent problem into two
new subproblems, where we use superscript (j) to denote
the iteration index of the optimization variables. In particular,
among all available nodes, we select the node associated with
the smallest lower bound and partition its set according to the
Euclidean distance between �bs,t and its rounded version bs,t.
Specifically, in the j-th iteration, we branch the node with
index (s∗, t∗), where (s∗, t∗) is given by

(s∗, t∗) = arg max
s,t

����b(j)
s,t − b

(j)

s,t

��� . (34)

Accordingly, the feasible set of bs∗,t∗ , i.e., B(j)
s∗,t∗ , is further

divided into two new subsets (B(j)
s∗,t∗)l and (B(j)

s∗,t∗)r, which

are associated with b
(j)
s∗,t∗ = 0 and b

(j)
s∗,t∗ = 1, respectively.

Then, in the j-th iteration, we focus on the following two
subproblems Pi

Pi :

minimize
Wk,�Wk,s,t,p,q∈H

NT ,

V,�Vs,t,p,q∈H
NT ,

bs,t,βs,t,p,q

�
s∈SR,

t∈�T

�
p∈SR,

q∈�T

Tr

��
k∈K

�Wk,s,t,p,q+ �Vs,t,p,q

�

s.t. C1, C2, C3, C5, C6a-C6d, C7a-C7d, C8a-C8d,

C4: b
(j)
s,t ∈ B(j)

s,t , ∀s∈SR\{s∗}, t∈T \{t∗} ,

C10: b
(j)
s∗,t∗ = i, (35)

9Since the optimal solution of (32), i.e., �b∗s,t, and its rounded version
bs,t generally lead to different optimal beamforming policies, we denote the
optimal beamforming policy associated with bs,t by (W∗∗

k ,V∗∗) to avoid
ambiguity.

minimize
Wk,�Wk,s,t,p,q∈H

NT ,

V,�Vs,t,p,q∈H
NT ,

�bs,t, �βs,t,p,q

FL(�bs,t,Wk,V) Δ=
�

s∈SR,

t∈�T

�
p∈SR,

q∈�T

Tr

��
k∈K

�Wk,s,t,p,q + �Vs,t,p,q

�

s.t. C3, C9,�C1:
1

Γreqk

�
s,p∈SR,

t,q∈�T

Tr
	
hI,k,p,qhH

I,k,s,t
�Wk,s,t,p,q



−

�
s,p∈SR,

t,q∈�T

Tr
�
hI,k,p,qhH

I,k,s,t

	 �
r∈K\{k}

�Wr,s,t,p,q + �Vs,t,p,q


�
≥σ2

Ik
, ∀k,

�C2:Creqj
≥ exp

�
− �j

�
s,p∈SR,

t,q∈�T

Tr
	
hE,j,p,qhH

E,j,s,t(
�
k∈K

�Wk,s,t,p,q + �Vs,t,p,q)

�

, ∀j, �C4: 0 ≤ �bs,t ≤ 1, ∀s, t,

�C5:
�

s∈SR

�bs,t = 1, ∀t, �C6a: 0 ≤ �βs,t,p,q ≤ 1,�C6b: �βs,t,p,q ≤ �bs,t, �C6c: �βs,t,p,q ≤ �bp,q,

�C6d: �βs,t,p,q ≥ �bs,t +�bp,q − 1,�C7a: �Wk,s,t,p,q � �βs,t,p,qP
maxINT , �C7b: �Wk,s,t,p,q � Wk,�C7c: �Wk,s,t,p,q � Wk − (1 − �βs,t,p,q)PmaxINT , �C7d: �Wk,s,t,p,q � 0, �C8a: �Vs,t,p,q � �βs,t,p,qP

maxINT ,�C8b: �Vs,t,p,q � V − (1 − �βs,t,p,q)PmaxINT , �C8c: �Vs,t,p,q � V, �C8d: �Vs,t,p,q � 0, (32)
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Fig. 3. An illustration of the BnB search tree for SR = 2 and T = 2. The
green arrows and dots correspond to the path to the optimal node (yellow
star). The red and grey dots correspond to non-optimal feasible nodes and
discarded nodes, respectively.

where i ∈ {0, 1}. We note that constraint C4 contains both the
transmission mode selection variables determined in the previ-
ous iterations and the undetermined binary optimization vari-
ables to be optimized in the future iterations, which makes (35)
a non-convex optimization problem. By relaxing the unde-
termined binary bs,t to continuous optimization variables in
[0, 1], we solve a relaxed version of (35) to obtain the optimal
solution and the corresponding objective function value. Then,
based on the optimal solution, we determine the rounded
solution according to (33). Subsequently, we solve (31) by
inserting the rounded solution and compute the corresponding
objective function value. Based on these objective function
values, we can respectively update the upper bound and lower
bound in each iteration. In Figure 3, we provide an example
for the BnB search tree for T = 2 and SR = 2. Firstly, the root
node branches into two new nodes associated with bs,t = 0
and bs,t = 1. In each iteration, the search tree is expanded
by adding two new nodes while it is pruned by discarding
those nodes (grey dots) that are worse than the current upper
bound. We note that the branching procedure is exhaustive due
to the limited depth of the search tree and the finite number
of nodes at each depth. As a result, the BnB algorithm always
terminates within a finite number of iterations.

The BnB-based algorithm for optimally solving optimiza-
tion problem (31) is summarized in Algorithm 1. In each
iteration of the BnB-based algorithm, we denote the sets and
the solutions associated with the two partitioned child nodes
by subscripts l and r, respectively, to distinguish them from
those associated with the parent node. The aforementioned
set partitioning, node branching, and bound updating steps
are repeatedly performed such that the difference between the
lower bound and the upper bound of (31) decreases until
it is less than a pre-defined error tolerance. It is known
that BnB-based algorithms are guaranteed to converge to
an εBnB-optimal solution within a finite number of itera-
tions [40], where εBnB is the maximum error tolerance. The
proof of convergence for the adopted BnB algorithm fol-
lows directly from [45]. The developed BnB-based algorithm
can serve as a performance benchmark for any suboptimal
algorithm. However, the computational complexity of the

Algorithm 1 BnB-Based Algorithm

1: Solve (32) to obtain optimal solution (�b∗s,t)
(1) and com-

pute lower bound L(1) = FL

	
(�b∗s,t)

(1), (W∗
k)(1), (V∗)(1)



.

Compute the rounded binary solution (bs,t)(1) according
to (33) and obtain the corresponding upper bound U (1) =
FU

	
(bs,t)(1), (W∗∗

k )(1), (V∗∗)(1)


. Initialize the search tree

TBnB by adding the root node associated with B(1) and
(�b∗s,t)

(1). Set convergence tolerance 0 < εBnB  1 and
iteration index j = 1.

2: repeat
3: Select the node corresponding to the smallest lower

bound FL

	
(�b∗s,t)

(j), (W∗
k)(j), (V∗)(j)



4: Partition the feasible set associated with the selected node

into two subsets (Bs∗,t∗)
(j)
l and (Bs∗,t∗)

(j)
r according

to (34)
5: Solve the relaxed version of the two subproblems P0 and

P1 in (35) to obtain optimal solutions (�bs∗,t∗ = 0,�b∗s,t)
(j)
l

and (�bs∗,t∗ = 1,�b∗s,t)
(j)
r , ∀s ∈ SR \ {s∗} , t ∈ T \ {t∗},

and store the corresponding objective function values
6: Compute the rounded solutions based on�

(�bs∗,t∗ = 0,�b∗s,t)
(j)
l , (�bs∗,t∗ = 1,�b∗s,t)

(j)
r

 
and obtain�

(bs,t)
(j)
l , (bs,t)

(j)
r

 
7: Solve the problem in (31) based on (bs,t)

(j)
l and (bs,t)

(j)
r

and store the corresponding objective function values
8: Expand the tree TBnB by adding the two new nodes

associated with (Bs∗,t∗)
(j)
l and (�bs∗,t∗ = 0,�b∗s,t)

(j)
l and

(Bs∗,t∗)
(j)
r and (�bs∗,t∗ = 1,�b∗s,t)

(j)
r , respectively

9: Among all existing nodes in TBnB, update
L(j) and U (j) as the smallest upper bound
FU

	
(bs,t)(j), (W∗∗

k )(j), (V∗∗)(j)



and lower bound
FL

	
(�b∗s,t)(j), (W∗

k)(j), (V∗)(j)


, respectively

10: Set j = j + 1
11: until U(j−1)−L(j−1)

L(j−1) ≤ εBnB

12: Output the optimal solution (bs,t)(j−1) and the correspond-
ing beamforming policy

	
(W∗∗

k )(j−1), (V∗∗)(j−1)



BnB-based algorithm scales exponentially with the number
of transmission modes and the number of tiles. To strike
a balance between optimality and computational complexity,
in the next subsection, we develop an SCA-based algorithm
which determines a suboptimal solution of the considered
optimization problem in (18) in polynomial time.10

C. Suboptimal Resource Allocation Scheme

We start with the non-convex optimization problem in (31).
To facilitate efficient resource allocation algorithm design,

10We note that, in the literature, optimization problems involving coupled
variables are often tackled by AO-based algorithms. However, AO-based
algorithms cannot guarantee the joint optimality of the optimization variables
and may get stuck in saddle points [46]. To preserve the joint optimality,
we develop an SCA-based algorithm which is guaranteed to converge to a
locally optimal solution of (18).
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we first rewrite constraint C4 equivalently as follows:

C4a:
�

s∈SR,

t∈�T

bs,t − b2
s,t ≤ 0 and C4b: 0 ≤ bs,t ≤ 1, ∀s, t.

(36)

We note that constraint C4a involves a difference of convex
(d.c.) functions and hence is still non-convex with respect
to bs,t. To circumvent this obstacle, we employ the penalty
method [47] and recast (31) as follows:

minimize
Wk,�Wk,s,t,p,q∈H

NT ,

V,�Vs,t,p,q∈H
NT ,

bs,t,βs,t,p,q

�
s∈SR,

t∈�T

�
p∈SR,

q∈�T

Tr

��
k∈K

�Wk,s,t,p,q+ �Vs,t,p,q

�

+ χ
�

s∈SR,

t∈�T

(bs,t − b2
s,t)

s.t. �C1, �C2, C3, C4b, C5, C6a-C8d, C9, (37)

where χ � 0 is a constant penalty factor which ensures
that bs,t is binary. Next, we reveal the equivalence between
problem (37) and problem (31) in the following theorem [47].

Theorem 2: Denote the optimal solution of problem (37) as
(bs,t)i with penalty factor χ = χi. When χi is sufficiently
large, i.e., χ = χi → ∞, every limit point (bs,t) of the
sequence {(bs,t)i} is an optimal solution of problem (31).

Proof: The optimization problem in (37) has a similar
structure as [48, Problem (27)] and Theorem 2 can be proved
following the same steps as in [48, Appendix C]. Due to the
limited space, we omit the detailed proof of Theorem 2 for
brevity. �

We note that the objective function of (37) is in the canon-
ical form of a difference of convex programming problem,
which facilitates the application of SCA. In particular, for a
given feasible point b

(m)
s,t found in the m-th iteration of the

SCA procedure, we construct a global underestimator of b2
s,t

as follows

b2
s,t ≥ 2bs,tb

(m)
s,t − (b(m)

s,t )2, ∀s, t. (38)

The optimization problem solved in the (m+1)-th iteration
of the proposed algorithm is given by

minimize
Wk,�Wk,s,t,p,q∈H

NT ,

V,�Vs,t,p,q∈H
NT ,

bs,t,βs,t,p,q

f(Wk,V, bs,t)

s.t. �C1, �C2, C3, C4b, C5-C9, (39)

where f(Wk,V, bs,t) is defined as

f(Wk,V, bs,t) =
�

s∈SR,

t∈�T

�
p∈SR,

q∈�T

Tr

��
k∈K

�Wk,s,t,p,q + �Vs,t,p,q

�

+ χ
�

s∈SR,

t∈�T

�
bs,t − 2bs,tb

(m)
s,t + (b(m)

s,t )2
�
.

(40)

We note that the only non-convex constraint in (39) is the
unit-rank constraint C9. To overcome this, we omit constraint

Algorithm 2 SCA-Based Algorithm

1: Set initial point W(1)
k , V(1), �W(1)

k,s,t,p,q , �V(1)
s,t,p,q, b

(1)
s,t ,

β
(1)
s,t,p,q, iteration index m = 1, and convergence tolerance

0 < εSCA  1.
2: repeat
3: For given W(m)

k , V(m), �W(m)
k,s,t,p,q , �V(m)

s,t,p,q , b
(m)
s,t ,

β
(m)
s,t,p,q obtain an intermediate solution W(m+1)

k ,

V(m+1), �W(m+1)
k,s,t,p,q , �V(m+1)

s,t,p,q , b
(m+1)
s,t , β

(m+1)
s,t,p,q by solving

the relaxed version of problem (39)
4: Set m = m + 1
5: until

f(W
(m−1)
k ,V(m−1),b

(m−1)
s,t )−f(W

(m)
k ,V(m),b

(m)
s,t )

f(W
(m)
k ,V(m),b

(m)
s,t )

≤ εSCA

C9 by applying SDR. Following similar steps as in the
Appendix, we can prove that the solution of the relaxed
problem yields a rank-one beamforming matrix. As a result,
the rank-relaxed version of (39) becomes a standard convex
optimization problem which can be solved by convex pro-
gram solvers such as CVX [44]. The overall algorithm is
summarized in Algorithm 2. In each iteration of Algorithm 2,
the objective function in (39) is monotonically decreasing.
Moreover, as χ → ∞, the proposed algorithm asymptotically
converges to a locally optimal solution of (31) in polynomial
time.

Remark 3: In the literature, the commonly adopted opti-
mization framework for IRSs aims at jointly optimizing the
continuous [49] or discrete [24] phase shifts of the IRS
elements. Advanced algorithms based on AO [10], inner
approximation (IA) [20], and SCA [21] have been developed to
tackle the resulting IRS optimization problems. Nevertheless,
the computational complexity of these algorithms is typically
proportional to at least the cubic power of the number of
IRS elements, i.e., M . Furthermore, since the number of
served ERs and IRs is typically substantially smaller than the
number of IRS elements, the overall computational complexity
of resource allocation optimization algorithm is dominated
by M . Moreover, for a large IRS-assisted system, the number
of phase shift elements typically exceeds 500. Hence, the
online element-wise IRS optimization design becomes pro-
hibitive for practically large IRSs. In contrast, by adopting
the proposed TT-based optimization framework and employing
Algorithm 2, the computational complexity of IRS optimiza-
tion scales with the number of tiles and the size of the refined
transmission mode set specified in Section III-B, i.e., T and
SR, instead of the number of IRS elements M . In particular,
the (worst case) per iteration computational complexity of
Algorithm 2 is given by O

�
(K + 1)S2

RT 2N3
T +

	
(K +

1)S2
RT 2


2
N2

T +
	
(K + 1)S2

RT 2

3�

, where O (·) is the big-
O notation [50, Theorem 3.12]. Hence, by properly adjusting
the number of tiles and the number of transmission modes, the
computational complexity of the developed algorithm becomes
affordable for the optimization of large IRSs.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
resource allocation schemes via simulations.
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Fig. 4. Simulation setup for an IRS-assisted SWIPT system, which consists
of K = 2 IRs and J = 2 ERs.

TABLE I

SIMULATION PARAMETERS

A. Simulation Setup

Figure 4 illustrates the schematic of the simulated multiuser
MISO SWIPT system. We focus on the resource allocation
algorithm design for one sector of a cell with a radius
of 10 m. The BS is equipped with NT = 8 antennas, unless
otherwise specified.11 Unless specified otherwise, we assume
that there are K = 2 IRs randomly and uniformly distributed
in the considered SWIPT system. To enhance the system
performance, we consider a rectangular IRS comprising M =
600 elements. The IRS is located at the edge of the sector
and is 10 m away from the BS. There are J = 2 ERs
randomly and uniformly distributed within the charging zone
between the BS and the IRS, which is a semicircular area
(blue area) with the IRS at its center and a radius of 2 m,
cf. Figure 4. To facilitate computationally efficient resource
allocation algorithm design, we partition the 600 IRS elements
into T tiles of equal size, where each tile comprises 600/T
phase shift elements. We jointly design the elements of each
tile offline to generate a set of transmission modes. Following
a similar approach as in [22, Section III-A], for all tiles,
we generate a transmission mode set which is the product
of a reflection codebook with 121 elements and a wavefront
phase codebook with 2 elements.12 Then, we employ the
three mode pre-selection criteria proposed in Section III-B

11In general, the maximum number of IRs and ERs that can be served
depends on the number of the antennas at the BS. As a result, throughout this
section, we set K + J ≤ NT such that the QoS of the IRs and ERs can be
guaranteed.

12The reflection codebook enables the tile to reflect an incident signal with
the desired phase shift, while the wavefront phase codebook facilitates the
combination of the signals that arrive from different tiles at the receivers in
a constructive or destructive manner.

and obtain the corresponding refined transmission mode sets.
For a fair comparison, we adjust parameters δ1, δ2,r,i, and ω
such that the refined transmission mode sets for all criteria
have the same size SR. In the following, unless otherwise
specified, we pre-select the transmission modes based on
Criterion 1. Moreover, we assume that the channel coefficients
contained in CT, CRk

, and CDk
are impaired by free space

path loss, shadowing, and Rayleigh fading. The path loss
exponent is assumed to be 2 for all channels while the path
loss at a reference distance of 1 m is set as ( c

4πfc
)2 =

40 dB [48]. Assuming the direct links are severely shadowed,
the shadowing attenuations are −30 dB and 0 dB for the
direct links and the reflected links, respectively. The AoAs and
AoDs at the BS and the IRS are uniformly distributed random
variables and are generated as follows: the azimuth angles and
polarizations of the incident signal are uniformly distributed
in the interval [0, 2π]. The elevation angles of the IRS and the
BS are uniformly distributed in the range of [0, π/4] while
the elevation angles of all users are uniformly distributed in
the interval [0, π]. The simulation results shown in this section
have been averaged over different channel realizations and the
adopted parameter values are listed in Table I.

B. Baseline Schemes

To investigate the effectiveness of the algorithms devel-
oped in this paper, we consider three baseline schemes. For
baseline scheme 1, a transmission mode is randomly chosen
from the refined transmission mode set and is assigned to
each tile while the BS adopts an isotropic radiation pattern
for V. Then, we optimize the beamforming vector wk and
the power allocated to the covariance matrix of the energy
signal V for minimization of the total transmit power. For
baseline scheme 2, the IRS employs random phase shifts.
Then, we jointly optimize the beamforming vector wk and
the covariance matrix of the energy signal V for minimization
of the BS total transmit power. For baseline scheme 3, for
each tile, we select the transmission mode corresponding to
the channel vector with the largest Euclidean norm directly
from the offline transmission mode set, and the BS employs
maximum ratio transmission with respect to the corresponding

channel vector, i.e., wk =
√

pkhI,k

�hI,k�2

, where pk is the power

allocated to IR k. Then, the transmit power at the BS is
minimized by optimizing the power allocated to each IR and
the covariance matrix of the energy signal.

C. Convergence of the Proposed Algorithms

In Figure 5, we investigate the convergence behavior of the
proposed algorithms for different IRS models. For T = 3 and
SR = 8, we observe that the upper bound and lower bound
of the proposed optimal scheme monotonically converge to
the same objective function value confirming the optimality
of the proposed optimal scheme. Yet, the average number of
iterations needed for achieving convergence is around 1,000.
This is due to the fact that the computational complexity of
the proposed optimal algorithm increases exponentially with T
and SR. Moreover, Figure 5 also confirms that the proposed
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Fig. 5. Convergence behavior of different algorithms for K = J = 2,
NT = 10, εBnB = 10−4, εSCA = 10−4, Γreq = 10 dB, and
Ereq = 5 μW.

suboptimal scheme achieves a close-to-optimal performance
while enjoying a polynomial time computational complexity.
For the suboptimal scheme, we also consider an IRS with
T = 4 and SR = 16. As we increase the number of tiles and
enlarge the size of the refined transmission mode set (from
T = 3 and SR = 8 to T = 4 and SR = 16), the total transmit
power required for the proposed suboptimal scheme is reduced
by roughly 1 dB. Correspondingly, the suboptimal scheme
requires approximately 40 additional iterations to converge for
T = 4 and SR = 16 compared to T = 3 and SR = 8.
This confirms that by reconfiguring the tiles and resizing
the refined transmission mode set, we can flexibly adjust
the trade-off between system performance and the number
of iterations required for convergence which is desirable in
practice. On the other hand, we also investigate the perfor-
mance of an AO-based scheme employing the conventional
IRS model. In particular, we apply the AO-based algorithm
reported in [48] to jointly optimize the phase shifts of all IRS
elements and the transmit beamformers for minimization of the
BS transmit power under the same QoS requirements for the
ERs and IRs as for the proposed schemes. As can be seen from
Figure 5, for the considered large IRS with 600 elements, the
AO-based algorithm for the conventional IRS model requires
more than 400 iterations to converge which is substantially
more than the proposed suboptimal algorithm. This is due
to the fact that by adopting the element-wise optimization
framework, the search space of the AO-based algorithm scales
with the large number of phase shift elements. Meanwhile,
we also observe that the AO-based algorithm for the con-
ventional IRS model leads to a higher power consumption
(roughly 1 dB) compared to the proposed schemes with T = 3
and SR = 8. The reason behind this is two-fold. First,
the conventional IRS model over-optimistically assumes a
unit gain for the reflected signal, which neither takes into
account the limited number of scatterers nor captures the
impact of the physical characteristics of the IRS channels,
e.g., the incident and reflected angles and the polarization of
the waves. As a result, the conventional IRS model may not
be able to efficiently enhance the propagation conditions of

Fig. 6. Average total transmit power (dBm) versus minimum required SINR
at IRs for different schemes with K = J = 2, NT = 8, T = 3, and SR = 8.

practical low-rank channels induced by a limited number of
scatterers. Second, the AO-based algorithm converges only to
a stationary point [46] while our proposed suboptimal algo-
rithm yields a close-to-optimal performance. For comparison,
we also show the performance of a conventional SWIPT
system without IRS. In this case, the beamforming vectors
and the covariance matrix of the energy signal are jointly
designed for minimization of the total transmit power. As can
be seen from Figure 5, this scheme requires a significantly
higher transmit power compared to the proposed optimal and
suboptimal schemes (roughly 16 dB more). This indicates that
IRSs are indeed a powerful tool to enhance the performance of
SWIPT systems. Furthermore, for the parameters adopted in
Figure 5, in Table II, we provide the average runtime needed
for convergence13 of the proposed optimal and suboptimal
schemes as well as the AO-based scheme. To facilitate the
presentation, we normalize the average convergence runtime
of the proposed optimal and suboptimal schemes with respect
to that of the commonly adopted AO-based scheme. As can
be observed from Table II, the AO-based scheme, which is
based on the conventional IRS model, requires a significantly
longer runtime compared to the proposed schemes, which are
based on the physics-based IRS model, indicating a higher
complexity and slower convergence. Moreover, by tuning T
and SR, the convergence runtime of the proposed schemes can
be adjusted, which facilitates the efficient online optimization
for the design of practically large IRSs.

D. Total Transmit Power Versus Minimum Required SINR

In Figure 6, we investigate the average total transmit power
versus the minimum required SINR, Γreq = Γreqk

, ∀k,
at the IRs for different resource allocation schemes. Since the
AO-based scheme employing the conventional IRS model has
a prohibitively high complexity for the considered large IRS
and worse performance compared to our proposed schemes,
we do not consider it in Figure 6. We can observe from

13These simulations were carried out on a computer equipped with an Intel
Core i7-3770 processor with a base frequency of 3.40 GHz.
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TABLE II

COMPARISON OF THE AVERAGE CONVERGENCE RUNTIME RATIO OF DIFFERENT SCHEMES

Figure 6 that the required total transmit powers of the proposed
optimal and suboptimal schemes as well as the three baseline
schemes grow with Γreq. This is attributed to the fact that to
satisfy a more stringent minimum SINR requirement, Γreq,
the BS has to transmit with higher power. However, the
proposed optimal and suboptimal schemes achieve significant
power savings compared with the three baseline schemes.
This reveals the effectiveness of the proposed schemes in
jointly optimizing the beamforming vectors and the transmis-
sion mode selection. Besides, we observe that for a smaller
Ereq, the total transmit power for the proposed optimal and
suboptimal schemes decreases. This is due to the fact that the
BS has to allocate less power to the energy signal when the
minimum EH requirement is less stringent. Moreover, we also
show results for a scheme that is based on the overly-simplified
linear EH model for the ERs. In particular, in this case,
we solve a problem similar to (18) except that the harvested
energy is assumed to be linearly proportional to the received
RF power. Then, we take the obtained solution back into
the actual system with non-linear EH and check if the QoS
requirement of the ERs is satisfied. If the obtained solution is
infeasible, we increase the transmit power until constraint C2
in (18) is fulfilled. As can be observed from Figure 6, to satisfy
the QoS requirement of the ERs, the scheme based on the
linear EH model consumes more power than the proposed
schemes which are based on the non-linear EH model. This
is due to the fact that in systems with practical non-linear
EH circuits, the beamforming policy optimized for the linear
EH model causes some mismatch and underutilization of
resources.

E. Total Transmit Power Versus Size of Refined Transmission
Mode Set

Figure 7 depicts the average total transmit power versus the
size of the refined transmission mode set, SR, for different
resource allocation schemes. By adjusting parameter δ1 in
Criterion 1, we select more transmission modes and increase
the size of the refined transmission mode set as desired.
As can be seen from the figure, the average total transmit
powers of the proposed optimal and suboptimal schemes
decrease with the size of the refined transmission mode set,
i.e., SR. This is due to the fact that as SR grows, additional
transmission modes are included in the refined transmission
mode set, which can be exploited for customizing a more
favorable wireless channel and to potentially reduce the BS
transmit power at the expense of a higher computational com-
plexity. We note that for practical IRSs (usually comprising
more than 500 phase shift elements), algorithms developed
under the conventional element-wise optimization framework,

Fig. 7. Average total transmit power (dBm) versus the size of the refined
transmission mode set for different schemes with K = J = 2, NT = 8,
Γreq = 10 dB, and Ereq = 10 μW.

e.g., AO and IA, become prohibitively complex, while the val-
ues of T and SR for the proposed scheme can still be properly
chosen to allow for efficient online optimization. Moreover,
unlike the proposed optimal and suboptimal schemes, the
average total transmit power of baseline scheme 1 dramati-
cally increases with SR. In fact, as the refined transmission
mode set becomes larger, the random transmission mode
selection in baseline scheme 1 is more likely to choose a
transmission mode yielding a small effective channel gain,
which potentially degrades the received power of the desired
signal. As a result, the BS has to consume more power to
satisfy the QoS requirements of the receivers. In contrast,
the average total transmit powers of baseline schemes 2 and
3 are almost independent of SR. Yet, the reasons behind this
are rather different. In particular, instead of selecting a pre-
defined transmission mode, baseline scheme 2 applies an IRS
with randomly generated phase shifts. Hence, the performance
of baseline scheme 2 does not depend on the size of the
refined transmission mode set. As for baseline scheme 3, the
transmission mode selection strategy is based on the offline
transmission mode set and identical for all tiles regardless of
the size of the refined transmission mode set.

F. Total Transmit Power Versus Number of Receivers

In Figure 8, we study the average total transmit power
versus the number of IRs, K , for different resource allocation
schemes. For ease of presentation, we focus on the proposed
suboptimal scheme as it closely approaches the performance
of the proposed optimal scheme but entails a much lower
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Fig. 8. Average total transmit power (dBm) versus the number of IRs for
different schemes with NT = 10, T = 3, SR = 8, Γreq = 10 dB, and
Ereq = 10 μW.

computational complexity. As expected, the total transmit
power increases with the number of receivers. The reason for
this is two-fold. First, to meet the additional minimum SINR
and EH requirements introduced by the additional receivers,
a higher transmit power at the BS is necessary. Secondly, as the
number of receivers increases, the BS has to dedicate more
degrees of freedom (DoFs) to effectively managing the more
severe multiuser interference such that the BS is less capable of
reducing the total transmit power. Moreover, we observe that
the average total transmit powers for all considered baseline
schemes are substantially higher than that of the proposed
suboptimal scheme. In particular, baseline scheme 1 yields
a much higher power consumption compared to the proposed
scheme due to the randomly selected transmission mode and
the fixed energy signal radiation pattern. As for baseline
scheme 2, due to the random phase shift pattern of the IRS,
the DoFs offered by the IRS cannot be fully exploited for
establishing a beneficial radio propagation environment to
facilitate power-efficient resource allocation. As for baseline
scheme 3, since the transmission modes for all tiles are identi-
cal and the beamforming policy is partially fixed, performance
is sacrificed in exchange for a simpler implementation.

G. Total Transmit Power Versus Number of Antennas

Figure 9 illustrates the average total transmit power ver-
sus the number of antennas at the BS, NT, for different
resource allocation schemes. It is expected that the average
total transmit power decreases as the number of antennas
grows since additional DoFs can be exploited for beamforming
design when more antennas are available at the BS. Moreover,
compared with the three baseline schemes, the proposed
suboptimal scheme provides substantial power savings due
to its ability to fully utilize the resources available in the
system. On the other hand, we also study the impact of
the numbers of tiles on performance. As can be seen from
Figure 9, the proposed suboptimal scheme consumes less
power when the IRS is divided into more tiles. Yet, as we
further increase T from 8 to 10, the power reduction becomes

Fig. 9. Average total transmit power (dBm) versus the number of antennas
for different schemes with K = J = 2, SR = 8, Γreq = 10 dB, and
Ereq = 10 μW.

marginal (approximately 0.2 dB). In fact, a small number of
tiles is sufficient to preserve most of the maximum possible
performance gain enabled by the IRS. In other words, for
large IRS, it is not necessary nor computationally efficient
to jointly optimize all phase shift elements, as is done in the
conventional element-wise optimization framework adopted in
the literature. Furthermore, we also show the performance of
a system without IRS. The average total transmit power of
this system also decreases with increasing numbers of transmit
antennas. This is due to the fact that the BS can exploit the
additional DoFs introduced by the extra antennas to facilitate
a more precise beamforming. On the other hand, compared
with the IRS-assisted system, the system without IRS requires
a significantly higher transmit power as it cannot benefit from
the significant passive beamforming gain offered by the IRS.
This confirms the effectiveness of deploying IRSs to enhance
the performance of SWIPT systems.

H. Impact of Transmission Mode Pre-Selection

Figure 10 illustrates the average total transmit power versus
the weight factor of Criterion 3 for transmission mode pre-
selection. We observe that the average total transmit power for
the proposed suboptimal scheme employing Criterion 3 first
decreases with weight factor ω (1 ≤ ω ≤ 4). Specifically,
as the weight factor increases, more transmission modes that
favor the effective channel vectors of the ERs, i.e., �hE,j,s,t�2,
are included in the refined transmission mode set. Also,
in typical SWIPT systems, the ERs usually require much
higher received powers compared to the IRs. As a result,
refined transmission mode sets constructed with larger ω
enable the configuration of wireless propagation environments
that are more favorable for the ERs, which potentially results
in power savings. Yet, as we further increase ω, the power
consumption of the BS starts to increase. This is due to
the fact that very large weight factors (ω > 4) lead to the
construction of severely biased transmission mode sets that
are favorable for the ERs but lead to poor channel conditions
for the IRs. Hence, the BS is forced to consume more power to
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Fig. 10. Average total transmit power (dBm) versus the weight factor of
Criterion 3 for different schemes with K = J = 2, NT = 8, T = 3,
SR = 8, Γreq = 10 dB, and Ereq = 10 μW.

compensate for the severe signal attenuation, which outweighs
the power gain resulting from customizing favorable channels
for the ERs. In contrast, though also employing Criterion 3 to
refine the transmission mode set, baseline scheme 1 is not
sensitive to ω. This is due to the fact that its transmission
mode selection policy is fixed instead of being optimized over
the refined transmission mode set. On the other hand, we also
show the performance of the proposed suboptimal scheme
employing transmission mode pre-selection Criteria 2 and 3,
which do not depend on ω. In particular, Criterion 2 leads to
a lower transmit power compared to Criterion 1. In fact, since
Criterion 1 only focuses on the magnitude of the channel,
it may construct a biased transmission mode set when one
receiver enjoys much better channel conditions than the other
receivers. In this case, the BS is forced to increase the transmit
power to satisfy the QoS requirements of the receivers with
poor channel conditions. On the contrary, Criterion 2 gener-
ates individual transmission mode sets for all receivers and
promotes a wireless propagation environment that is favorable
for all receivers, which potentially leads to less transmit power
consumption compared with Criterion 1.

VI. CONCLUSION

In this paper, we studied the resource allocation algorithm
design for large IRS-assisted SWIPT systems. Compared with
existing works assuming an overly simplified system model,
we adopted a physics-based IRS model and a non-linear EH
model which can better capture the properties of practical
IRS-assisted SWIPT systems. To facilitate the efficient system
design for large IRSs, we partition the IRS into several
tiles and adopt a TT-based optimization framework which
comprises an offline transmission mode set design stage and an
online optimization stage. To further reduce the computational
complexity of IRS online design, we proposed two new trans-
mission mode pre-selection criteria. Given the refined trans-
mission mode set, we focused on the joint online optimization
of the transmit beamforming vectors, the covariance matrix
of the energy signal, and the transmission mode selection

for minimization of the BS transmit power while satisfying
the QoS requirements of the IRs and the ERs. To tackle
the formulated combinatorial optimization problem, we first
proposed a BnB-based optimization algorithm which yields
the globally optimal solution of the considered optimization
problem. Since the optimal scheme entails a high compu-
tational complexity, we also developed a computationally
efficient SCA-based algorithm which asymptotically converges
to a locally optimal solution. Simulation results showed that
the proposed schemes do not only yield considerable power
savings compared with three baseline schemes but also allow
us to flexibly strike a balance between system performance
and computational complexity by adjusting the number of
tiles and transmission modes. Moreover, the adopted physics-
based IRS model can effectively leverage the wave AoA and
AoD and polarization that are not explicitly modeled by the
conventional IRS model. Furthermore, in combination with the
physics-based IRS model, the proposed TT-based framework
was shown to be crucial for realizing real-time online design
of wireless systems assisted by large IRS.

APPENDIX

To start with, we rewrite the relaxed version of problem (32)
equivalently as follows:

minimize
Wk,�Wk,s,t,p,q∈H

NT ,

V,�Vs,t,p,q∈H
NT ,

�bs,t,�βs,t,p,q,θj

�
s∈SR,

t∈�T

�
p∈SR,

q∈�T

Tr

��
k∈K

�Wk,s,t,p,q+ �Vs,t,p,q

�

s.t. �C1, C3, �C4, �C5, �C6a-�C6d,�C7a-�C7d, �C8a-�C8d,�C2a: Creqj
≥ exp (−�jθj) , ∀j,�C2b: θj ≥
�

s∈SR,

t∈�T

�
p∈SR,

q∈�T

Tr
�
gp,q,jgH

s,t,j

	�
k∈K

�Wk,s,t,p,q

+ �Vs,t,p,q


�
, ∀j. (41)

Note that the optimization problem in (41) is jointly con-
vex with respect to the optimization variables and satisfies
Slater’s constraint qualification. Thus, strong duality holds
for (41). Moreover, since �Wk,s,t,p,q = �βs,t,p,qWk always
holds, we express the Lagrangian function of (41) in terms
of Wk as follows

L =
�
k∈K

�
Tr(

�
s,p∈SR,

q,t∈�T

�βs,t,p,qWk)

+ Tr(
�

s,p∈SR,

q,t∈�T

�βs,t,p,qUk,s,t,p,qWk)

− ηkTr(
�

s,p∈SR,

q,t∈�T

�βs,t,p,qhI,k,p,qhH
I,k,s,tWk)

−Tr(
�

s,p∈SR,

q,t∈�T

�βs,t,p,qZk,s,t,p,qWk)

+
�

s,p∈SR,

q,t∈�T

(1 − �βs,t,p,q)Tr(Xk,s,t,p,qWk)
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−
�

s,p∈SR,

q,t∈�T

(1 − �βs,t,p,q)Tr(Yk,s,t,p,qWk)

+ ηkΓreq
k

�
r∈K\{k}

Tr(
�

s,p∈SR,

q,t∈�T

�βs,t,p,qhI,k,p,qhH
I,k,s,tWk)

+
�
j∈J

ζjTr(
�

s,p∈SR,

q,t∈�T

�βs,t,p,qhE,j,p,qhH
E,j,s,tWk)

�
+ Φ.

(42)

Here, Φ comprises the terms that do not involve Wk. The
scalar Lagrange multipliers ηk and ζj ≥ 0 are associated with
constraint �C1 and �C2b, respectively. The positive semidefinite
Lagrange multiplier matrices Uk,s,t,p,q , Xk,s,t,p,q , Yk,s,t,p,q ,
and Zk,s,t,p,q ∈ CNT×NT are associated with constraints �C7a,�C7b, �C7c, and �C7d. Note that there always exist �β∗

s,t,p,q > 0.
Next, by examining the KKT conditions with respect to
Wk, we investigate the structure of the optimal beamforming
matrix. In particular, we have

K1 : η∗
k, ζ∗j ≥ 0,

U∗
k,s,t,p,q ,X

∗
k,s,t,p,q,Y

∗
k,s,t,p,q,Z

∗
k,s,t,p,q � 0, (43)

K2 :
�

s∈SR,

t∈�T

�
p∈SR,

q∈�T

�β∗
s,t,p,qZ

∗
k,s,t,p,qW

∗
k = 0, (44)

K3 : ∇Wk
L(W∗

k) = 0, (45)

where η∗
k , ζ∗j , U∗

k,s,t,p,q , X∗
k,s,t,p,q , Y∗

k,s,t,p,q , and Z∗
k,s,t,p,q

are the optimal values corresponding to W∗
k and �β∗

s,t,p,q . Note
that �β∗

s,t,p,q ≥ 0, W∗
k � 0, and Z∗

k,s,t,p,q � 0, and we have�β∗
s,t,p,qZ

∗
k,s,t,p,qW

∗
k = 0. Then, assuming �β∗

s◦,t◦,p◦,q◦ = 1,
we explicitly write ∇Wk

L(W∗
k) in K3 as follows

Z∗
k,s◦,t◦,p◦,q◦ =

�
s∈SR,t∈�T

�
p∈SR,q∈�T

�β∗
s,t,p,qINT − Δ∗

k, (46)

where Δ∗
k is given by

Δ∗
k =

�
s,p∈SR,

q,t∈�T

�β∗
s,t,p,q

�
η∗

khI,k,p,qhH
I,k,s,t

− �β∗
s,t,p,q

�
r∈K\{k}

η∗
rΓreq

r hI,r,p,qhH
I,r,s,t

− �β∗
s,t,p,q

�
j∈J

ζ∗j hE,j,p,qhH
E,j,s,t − �β∗

s,t,p,qU
∗
k,s,t,p,q

+ (1 − �β∗
s,t,p,q)

	
Y∗

k,s,t,p,q − X∗
k,s,t,p,q


�
+

�
s∈SR\{s◦},

t∈�T \{t◦}

�
p∈SR\{p◦},

q∈�T \{q◦}

�β∗
s,t,p,qZ

∗
k,s,t,p,q . (47)

Then, using similar arguments as in [51, Appendix A],
it can be shown that Z∗

k,s◦,t◦,p◦,q◦ in (46)
satisfies Rank(Z∗

k,s◦,t◦,p◦,q◦) ≥ NT − 1. Recalling
Z∗

k,s◦,t◦,p◦,q◦W∗
k = 0, for each IR k, we can always

obtain an optimal W∗
k with a unit rank. This completes the

proof.
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Abstract—In this paper, we study resource allocation design
for secure communication in intelligent reflecting surface (IRS)-
assisted multiuser multiple-input single-output (MISO) communi-
cation systems. To enhance physical layer security, artificial noise
(AN) is transmitted from the base station (BS) to deliberately
impair the channel of an eavesdropper. In particular, we jointly
optimize the phase shift matrix at the IRS and the beamforming
vectors and AN covariance matrix at the BS for maximization
of the system sum secrecy rate. To handle the resulting non-
convex optimization problem, we develop an efficient suboptimal
algorithm based on alternating optimization, successive convex
approximation, semidefinite relaxation, and manifold optimization.
Our simulation results reveal that the proposed scheme substan-
tially improves the system sum secrecy rate compared to two
baseline schemes.

I. INTRODUCTION
Recently, intelligent reflecting surface (IRS)-assisted wireless

communication systems have received considerable attention as
a promising approach for providing cost-effective and power-
efficient high data-rate communication services for the fifth-
generation and beyond wireless communication systems [1]–
[7]. Consisting of a set of small reflecting elements, IRSs can
be easily and flexibly deployed on building facades and interior
walls, improving communication service coverage [1]. Com-
pared to conventional relays and distributed antenna systems [8],
passive reflectors embedded in IRSs require little operational
power which makes them suitable for deployment in energy-
constrained systems. Furthermore, due to their programmability
and reconfigurability, IRSs can be adjusted on-demand such
that a favourable radio propagation environment is obtained
to improve system performance [1]. As a result, several initial
works have addressed technical issues regarding the design of
IRS-assisted communication systems. For instance, the authors
in [3] investigated the joint transmit beamforming and phase
shift matrix design for maximization of the total received power
of the user of an IRS-enhanced single-user system. In [5], two
computationally efficient suboptimal algorithms were developed
for maximization of the spectral efficiency achieved by an IRS-
assisted multiple-input single-output (MISO) communication
system. However, these works did not consider security and
the obtained results may not be applicable to systems where
communication security is a concern.

Recently, physical layer security has emerged as a promising
technology to facilitate secure communication in wireless sys-
tems [9]. By configuring multiple antennas at the base station
(BS), beamforming can be employed to degrade the channel
quality of eavesdroppers. In [10], a transmit beamforming
algorithm was designed to achieve communication secrecy in
a MISO wireless system. Furthermore, the authors of [11]
proposed two algorithms to maximize the secrecy rate in an
IRS-assisted MISO wireless system. In [12], the authors jointly
optimized the beamforming vectors at the BS and the phase
shifts at the IRS for maximization of the secrecy rate of a
legitimate user. However, in [11] and [12], artificial noise (AN)
is not employed for security enhancement. Nevertheless, AN

transmission is an effective approach to improve physical layer
security [13]. Moreover, [11] and [12] focused on the case of
maximizing the secrecy rate of a single user and the proposed
schemes may not be able to guarantee secure communication for
multiuser IRS-assisted systems. The authors of [14] investigated
the resource allocation algorithm design for maximization of
the minimum secrecy rate among several legitimate users of
an IRS-assisted multiuser MISO system. However, in [14] the
unit modulus constraint introduced by the reflectors of the IRS
was approximated by a convex constraint, which simplifies the
optimization problem considerably and may lead to a perfor-
mance loss. Therefore, the design of efficient resource allocation
algorithms for maximization of the sum secrecy rate of IRS-
assisted multiuser communication systems employing AN to
impair eavesdroppers and imposing a unit modulus constraint
for the IRS reflectors remains an open issue.

Motivated by the above discussions, in this paper, we inves-
tigate the joint design of the phase shift matrix at the IRS and
the downlink (DL) beamforming vectors and the AN covariance
matrix at the BS for maximizing the system sum secrecy rate.

II. SYSTEM MODEL
In this section, after introducing the notations used in this

paper, we present the system model adopted for IRS-assisted
communication.
A. Notations

In this paper, we use boldface capital and lower case letters to
represent matrices and vectors, respectively. RN×M and C

N×M

denote the space of N × M real-valued and complex-valued
matrices, respectively. HN denotes the set of all N -dimensional
complex Hermitian matrices. IN indicates an N × N identity
matrix. | · | and || · ||2 denote the absolute value of a complex
scalar and the l2-norm of a vector, respectively. xT , and xH

stand for the transpose and the conjugate transpose of vector x,
respectively. A � 0 indicates that A is a positive semidefinite
matrix. Rank(A), Tr(A), and [A]i,i denote the rank, the trace,
and the (i, i)-entry of matrix A, respectively. xi denotes the i-th
element of vector x. diag(x) represents the N × N diagonal
matrix with diagonal elements x1, · · · , xN . unt(x) represents
an N -dimensional vector with elements x1

|x1| , · · · ,
xN

|xN | . A ◦B
represents the Hadamard product of matrices A and B. �{·}
extracts the real value of a complex variable. E {·} denotes
statistical expectation. Δ

= and ∼ stand for “defined as” and
“distributed as”, respectively. The distribution of a circularly
symmetric complex Gaussian random variable with mean μ
and variance σ2 is denoted by CN (μ, σ2). [x]+ stands for
max {0, x}. The gradient vector of function f(x) with respect
to x is denoted by ∇xf(x).

B. IRS-assisted Multiuser Wireless Communication System
We consider an IRS-assisted multiuser DL communication

system which comprises a BS, an eavesdropper, an IRS, and a
set of desired users, indexed by K Δ

= {1, · · · ,K}, as illustrated

978-1-7281-0960-2/19/$31.00 ©2019 IEEE
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Fig. 1. An intelligent reflecting surface (IRS)-assisted secure communication
system with one eavesdropper and K = 3 desired users. The direct links from
the BS to the users and the eavesdropper are blocked by a building.

in Figure 1. The BS is equipped with NT > 1 antennas,
while both the desired users and the eavesdropper are single-
antenna devices. Moreover, a passive IRS is deployed to achieve
secure communication between the BS and the users. The IRS
employs M phase shifters, indexed by M Δ

= {1, · · · ,M},
and can be programmed and reconfigured via a controller.
Furthermore, perfect channel state information (CSI) of the
whole system is assumed to be available at the BS for resource
allocation design1. Besides, we assume that the direct links
from the BS to the users and the eavesdropper are unavailable
due to unfavorable propagation conditions (e.g., blockage by a
building).

In each scheduling time slot, the BS transmits a signal vector
x ∈ C

NT to the K users. In particular, the signal vector, which
comprises K information signals and AN, is given by

x =
∑
k∈K

wksk + z, (1)

where wk ∈ C
NT and sk ∈ C denote the beamforming vector

for the k-th user and the corresponding information bearing
signal, respectively. We assume E{|sk|2} = 1, ∀k ∈ K, without
loss of generality. Moreover, to guarantee secure communica-
tion, an AN vector z ∈ C

NT is generated and transmitted by
the BS to impair the eavesdropper. In particular, we model
z as a complex Gaussian random vector with zero mean and
covariance matrix Z ∈ H

NT , Z � 0.
The signals received by user k and the eavesdropper via the

reflection at the IRS are given by
yk = gH

k ΦH(
∑
k∈K

wksk + z) + nk, (2)

ye = lHΦH(
∑
k∈K

wksk + z) + ne, (3)

respectively, where gk ∈ C
M and l ∈ C

M denote the channel
vectors between the IRS and user k and between the IRS
and the eavesdropper, respectively. Φ = diag

(
ejφ1 , · · · , ejφM

)
denotes the phase shift matrix of the IRS, where φm, ∀m ∈ M,
represents the phase shift of the m-th reflector of the IRS
[3]. The channel matrix between the BS and the IRS is
denoted by H ∈ C

M×NT . Besides, nk ∼ CN (0, σ2
nk
) and

ne ∼ CN (0, σ2
ne
) are the additive white Gaussian noise samples

at user k and the eavesdropper, respectively.

III. OPTIMIZATION PROBLEM FORMULATION

In this section, we first define the adopted system per-
formance metric and then formulate the resource allocation
optimization problem for the considered system.

1In practice, the BS may not be able to obtain perfect CSI. Hence, the results
in this paper serve as a theoretical system performance benchmark.

A. Achievable Rate and Secrecy Rate

The achievable rate (bits/s/Hz) of user k is given by Rk =
log2(1 + Γk), where

Γk=

∣∣gH
k ΦHwk

∣∣2∑
r∈K\{k}

∣∣gH
k ΦHwr

∣∣2+Tr(HHΦHgkgH
k ΦHZ)+σ2

nk

. (4)

In this paper, we impose a worst-case assumption regarding the
capabilities of the eavesdropper for resource allocation algo-
rithm design to ensure secure communication [13]. Specifically,
we assume that the eavesdropper is capable of canceling all
multiuser interference before decoding the desired information.
Therefore, the channel capacity between the BS and the eaves-
dropper for wiretapping user k is given by

CE
k = log2

(
1 +

∣∣lHΦHwk

∣∣2
Tr(HHΦH llHΦHZ) + σ2

ne

)
. (5)

The achievable secrecy rate between the BS and user k is given
by RSec

k =
[
Rk − CE

k

]+
[15].

B. Optimization Problem Formulation

We aim to maximize the system sum secrecy rate by opti-
mizing wk, Z, and Φ. The corresponding optimization problem
is formulated as

maximize
wk ,Z∈H

NT ,Φ

∑
k∈K

[
Rk − CE

k

]+
(6)

s.t. C1:
∑
k∈K

‖wk‖2 +Tr(Z) ≤ Pmax,

C2:
∣∣∣[Φ]m,m

∣∣∣ = 1, ∀m, C3: Z � 0.

Constraint C1 limits the maximum BS transmit power allowance
to Pmax. Besides, the operator [·]+ has no impact on the optimal
solution and hence is omitted in the following for notational
simplicity2.

We note that it is very arduous to obtain the globally optimal
solution of (6), due to the coupling of the optimization variables
and the unit modulus constraint in C2. Therefore, we develop a
resource allocation algorithm based on alternating optimization
[16] to obtain a suboptimal solution of (6) in the next section.

IV. SOLUTION OF THE PROBLEM

In this section, we aim to design a computationally ef-
ficient suboptimal algorithm for handling (6) via alternating
optimization. For notational simplicity, we first define Gk =
diag(gH

k )H, L = diag(lH)H, Wk = wkw
H
k . Moreover, we

define a new optimization variable u =
[
ejφ1 , · · · , ejφM

]T
.

Then, we rewrite the received SINRs at user k as follows:

Γk=
Tr(WkG

H
k uuHGk)∑

r∈K\{k}
Tr(WrGH

k uuHGk)+Tr(ZGH
k uuHGk)+σ2

nk

. (7)

Moreover, the channel capacity for the eavesdropper with re-
spect to the message of user k in (5) can be rewritten as

CE
k = log2

(
1 +

Tr(WkL
HuuHL)

Tr(ZLHuuHL) + σ2
ne

)
. (8)

2It can be proved that at the optimal solution, if the achievable secrecy rate of
user k is non-positive, the proposed algorithm would turn off the transmission
of user k and reallocate the available power to other users.
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F1=−
∑
k∈K

log2

(∑
r∈K

Tr(WrG
H
k uuHGk)+Tr(ZGH

k uuHGk)+σ2
nk

)
, F2 =−Klog2

(
Tr(ZLHuuHL) + σ2

ne

)
, (9)

G1=−
∑
k∈K

log2

(∑
r∈K\{k}

Tr(WrG
H
k uuHGk)+Tr(ZG

H
k uuHGk)+σ

2
nk

)
, G2=−

∑
k∈K

log2

(
Tr(WkL

HuuHL)+Tr(ZLHuuHL)+σ2
ne

)
(10)

Now, to facilitate the application of alternating optimization,
we first recast (6) in equivalent form as follows:

minimize
Z∈H

NT ,W,u
f = F1 + F2 −G1 −G2 (11)

s.t. C1:
∑
k∈K

Tr(Wk) + Tr(Z) ≤ Pmax,

C2: |um| = 1, ∀m, C3: Z � 0,

C4: Wk � 0, ∀k, C5: Rank(Wk) ≤ 1, ∀k,
where W ∈ C

K×NT are the collection of all Wk, and F1, F2,
G1, and G2 are shown at the bottom of this page. Moreover,
um is the m-th element of u, and Wk ∈ H

NT , Wk � 0, and
Rank(Wk) ≤ 1 in (11) are imposed to ensure that Wk =
wkw

H
k holds after optimization.

By employing alternating optimization, we iteratively opti-
mize {W,Z} and u with the other one fixed. In particular,
for a given u, we solve (11) by employing successive convex
approximation (SCA) [17] and semidefinite relaxation (SDR)
[15]. Then, for given W and Z, we solve for u by applying
manifold optimization [18].

A. SCA and SDR
For a given u, the optimization problem in (11) can be

rewritten as minimize
Z∈H

NT ,W
F1 + F2 −G1 −G2 (12)

s.t. C1,C3-C5.
To facilitate the application of SCA, we first construct global
underestimators of G1 and G2, respectively [17]. In particular,
for any feasible point Wi and Zi, the differentiable convex
function G1(W,Z) satisfies the following inequality:

G1(W,Z) ≥ G1(W
i,Zi)

+Tr
((

∇WG1(W
i,Zi)

)H
(W −Wi)

)
+Tr

((
∇ZG1(W

i,Zi)
)H

(Z− Zi)
)

Δ
= G̃1(W,Z,Wi,Zi), (13)

where the right hand side term in (13) is a global underes-
timation of G1(W,Z). Similarly, a global underestimation of
G2(W,Z) at feasible point Wi and Zi can be constructed as
follows
G̃2(W,Z,Wi,Zi)

Δ
= G2(W

i,Zi)

+Tr
((

∇WG2(W
i,Zi)

)H
(W −Wi)

)
+Tr

((
∇ZG2(W

i,Zi)
)H

(Z− Zi)
)
. (14)

Therefore, for any given Wi and Zi, an upper bound of (12)
can be obtained by solving the following optimization problem:

minimize
Z∈H

NT ,W
F1 + F2 − G̃1 − G̃2 (15)

s.t. C1,C3-C5.
We note that the remaining non-convexity of (15) stems from
the rank-one constraint C5. To tackle this issue, we remove
constraint C5 by applying SDR where the relaxed version of

Algorithm 1 Successive Convex Approximation-Based Algo-
rithm

1: Initialize iteration index i = 1.
2: repeat
3: Solve (15) for given Wi and Zi and store the intermediate

solution W,Z
4: Set i = i+ 1 and Wi = W and Zi = Z
5: until convergence
6: W∗ = Wi and Z∗ = Zi

(15) can be efficiently solved via convex problem solvers such
as CVX [19]. In the following theorem, we reveal the tightness
of SDR.

Theorem 1: If Pmax > 0, an optimal beamforming matrix
Wk satisfying Rank(Wk) ≤ 1 can always be obtained.

Proof: Please refer to the Appendix. �
We note that the minimum of (15) serves as an upper bound

of (12). By employing the algorithm summarized in Algorithm
1, we can iteratively tighten the upper bound and obtain a
sequence of solutions W and Z. It can be shown that the
objective function in (15) is non-increasing in each iteration, and
the developed algorithm is guaranteed to converge to a locally
optimal solution of (12) [17].

B. Oblique Manifold Optimization
For given Wk and Z, we can rewrite (11) as:

minimize
u

F1 + F2 −G1 −G2 (16)

s.t. C2: [uuH ]m,m = 1, ∀m.
We note that it is very challenging to solve (16) optimally
due to the non-convex unit modulus constraint C2. In the
literature, the unit modulus constraint is often handled by SDR
and Gaussian randomization [3] which leads to a suboptimal
solution. Yet, the objective function may not be monotoni-
cally non-increasing in each iteration when this approach is
applied. Thus, the corresponding algorithm cannot guarantee
convergence. In contrast, in this paper, we develop a manifold
optimization-based algorithm which is guaranteed to converge
to a suboptimal solution. Moreover, unlike [14] where the
unit modulus constraint was relaxed, in this paper, the unit
modulus constraint is handled directly by exploiting manifold
optimization theory [18]. We note that constraint C2 defines an
oblique manifold [18] which can be characterized by

O =
{
u ∈ C

M | [uuH ]m,m = 1, ∀m ∈ M
}
. (17)

We note that constraint C2 is automatically satisfied when
optimizing u over the oblique manifold. Now, we introduce
some definitions which are commonly used in Riemannian
manifold optimization [18].

The tangent space of the oblique manifold O at point uj is
defined as the space which contains all tangent vectors of the
oblique manifold O at point uj , cf. Figure 2(a). Specifically,
each tangent vector is a vector that is a tangent to the oblique
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manifold O at point uj [18]. The tangent space for O at uj is
given by

Tuj
O =

{
v ∈ C

M | [vuH
j ]m,m = 0, ∀m ∈ M

}
, (18)

where v is a tangent vector at uj . Among all tangent vectors,
the one that yields the fastest increase of the objective function
is defined as the Riemannian gradient, i.e., graduj

f . The
Riemannian gradient of function f at point uj is calculated
based on the orthogonal projection of the Euclidean gradient
∇uj

f onto tangent space Tuj
O [20]. In particular, graduj

f is
given by

graduj
f = ∇uj

f −�
{
∇uj

f ◦ (uT
j )

H
}
◦ uj , (19)

where ∇uj
f is obtained as [21]

∇uj
f =

KL(ZH + Z)LHuj

(ln2)F2(uj)

+

∑
k∈K

∑
r∈K

[
Gk(W

H
r +Wr + ZH + Z)GH

k uj

]
(ln2)F1(uj)

−

∑
k∈K

∑
r∈K\{k}

[
Gk(W

H
r +Wr + ZH + Z)GH

k uj

]
(ln2)G1(uj)

−

∑
k∈K

L(WH
k +Wk + ZH + Z)LHuj

(ln2)G2(uj)
. (20)

After obtaining the Riemannian gradient graduj
f , we can

exploit the optimization approaches designed for the Euclidean
space to tackle manifold optimization problems. In particular,
we employ the conjugate gradient (CG) method [22], where
the update rule of the search direction in the Euclidean space
is given by

μj+1 = −∇uj+1f + αjμj . (21)
Here, μj denotes the search direction at uj and αj is chosen
as the Polak-Ribière parameter to achieve fast convergence
[22]. However, since vectors μj and μj+1 in (21) lie in TujO
and Tuj+1O, respectively, they cannot be integrated directly
over different tangent spaces. To circumvent this problem, we
introduce an operation called transport which maps μj from
tangent space Tuj

O to tangent space Tuj+1
O [23]. In particular,

the vector transport for oblique manifold O, as shown in cf.
Figure 2(b), is given by
Tuj→uj+1

(μj)
Δ
= Tuj

O �→ Tuj+1
O :

μj �→ μj−�
{
μj ◦(uT

j+1)
H
}
◦uj+1.(22)

Similar to (21), the search direction of the Riemannian gradient
in (19) can be updated based on the following equation:

μj+1 = −graduj+1
f + αjTuj→uj+1

(μj). (23)

Algorithm 2 Oblique Manifold Optimization-Based Algorithm
1: Set iteration index j = 1, convergence tolerance ε, step size δj ,

and initial point u1

2: Calculate the Riemannian gradient according to (19)
3: repeat
4: Choose the step size δj according to [18, p. 62]
5: Find uj+1 by retraction in (24)
6: Update Riemannian gradient graduj+1

f by using (19)
7: Calculate the vector transport Tuj→uj+1(μj) by using (22)
8: Choose Polak-Ribière parameter αj according to [18, Eq. 8.24]
9: Calculate conjugate search direction μj+1 by using (23)

10: Set j = j + 1

11: until
∥
∥
∥graduj

f
∥
∥
∥ ≤ ε

12: Set Φ = diag
(
(uT

j+1)
H
)

Algorithm 3 Alternating Optimization Algorithm
1: Set iteration index t = 1, the initial point u(1), convergence

tolerance ε, maximum iteration number Tmax.
2: repeat
3: Solve (12) via Algorithm 1 for given u(t) and store the optimal

solution W(t) and Z(t)

4: Solve (16) via Algorithm 2 for given W(t) and Z(t) and store
the solution u(t+1)

5: Set t = t+ 1
6: until

∣
∣
∣f (t+1) − f (t)

∣
∣
∣ ≤ ε

7: Obtain the solution by W∗ = W(t), Z∗ = Z(t), and u∗ = u(t)

After determining the search direction μj at uj , we introduce
another operation called retraction to determine the destination
on the oblique manifold [23]. In other words, by applying
retraction, we map a vector in the tangent space Tuj

O onto
the manifold O, cf. Figure 2(c). In particular, for a given point
uj on manifold O, the retraction for step size δj and search
direction μj are given as

Ruj
(δjμj)

Δ
= Tuj

O �→ O : δjμj �→ unt(δjμj). (24)
The problem in (16) can be tackled by applying the proposed
algorithm summarized in Algorithm 2. Since Algorithm 2 is a
gradient-based algorithm, the objective function in (16) is mono-
tonically non-increasing in each iteration. Hence, Algorithm 2
is guaranteed to converge to a stationary point of (16) [22].

The proposed alternating optimization algorithm is sum-
marized in Algorithm 3. Recall that the objective function
is monotonically non-increasing after each iteration of both
Algorithm 1 and Algorithm 2. Therefore, the proposed al-
ternating optimization algorithm is guaranteed to converge to a

uj

O

TujO grad
uj
f

∇uj
f

(a) Tangent space and Riemannian gradient.

uj

uj+1

O

TujO

Tuj+1O

μk

Tuj→uj+1

(
μj

)

(b) Vector transport.

uj

uj+1

Ruj
(δjμj)

O

TujO μj
δjμj

(c) Retraction.

Fig. 2. An illustration of major definitions in Riemannian manifold optimization.
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TABLE I
SYSTEM PARAMETERS

System bandwidth and carrier center frequency 200 kHz and 2.4 GHz
Noise powers, σ2

nk
and σ2

ne
−110 dBm

BS maximum transmit power, Pmax 40 dBm
Convergence tolerances, ε and ε 10−3
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Fig. 3. Average system sum secrecy rate (bits/s/Hz) versus maximum transmit
power (dBm) with K = 3, NT = 6, and M = 6.

suboptimal solution of (11).

V. SIMULATION RESULTS

We investigate the system performance of the proposed
resource allocation scheme via simulations. Table I summarizes
the parameters used in our simulation. In particular, the BS is
at the center of a single cell with radius 500 meters. One sector
of the cell happens to be blocked by buildings and there are
K users randomly and uniformly distributed within this sector.
An IRS is deployed to provide communication service for the
users in this sector. We focus on the resource allocation design
to achieve secure communication in this sector. Moreover, we
also adopt two baseline schemes for comparison. For baseline
scheme 1, we adopt an IRS with random phase φm, ∀m ∈ M
[1], and jointly optimize wk and Z. For baseline scheme 2, the
BS does not generate AN (as in [11] and [14]) and an IRS
is employed for security provisioning. In this case, we jointly
optimize only wk and Φ to achieve secure communication. rBe

and rRe denote the distance from the BS to the eavesdropper
and the distance from the IRS to the eavesdropper, respectively.

In Figure 3, we study the average system sum secrecy
rate versus the maximum transmit power. As expected, the
system sum secrecy rates for the proposed scheme and the two
baseline schemes increase monotonically with increasing Pmax.
Moreover, we can see that the proposed scheme outperforms
the baseline schemes. In fact, by jointly optimizing Φ, wk, and
Z, the proposed scheme can simultaneously facilitates a more
favourable radio propagation environment for the users and
impair the eavesdropper. In contrast, the two baseline schemes
achieve significantly lower system sum secrecy rates, due to the
random phase of the IRS for baseline scheme 1 and the lack of
AN for baseline scheme 2. Besides, we can observe from Figure
3 that the geometry of the network (i.e., the values of rBe and
rRe) has a significant impact on the system sum secrecy rate.
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Fig. 4. Average system sum secrecy secrecy rate (bits/s/Hz) versus number of
users with Pmax = 20 dBm, rBe = 200 m, and rRe = 250 m.

This indicates that the location of the IRS needs to be chosen
carefully for achieving the best possible system performance.

Figure 4 shows the average system sum secrecy rate versus
the number of legitimate users with Pmax = 20 dBm, NT = 6,
and M = 6. We observe that the system sum secrecy rates
achieved by the proposed scheme and the two baseline schemes
monotonically increase with K. This is due to the fact that both
the proposed scheme and the two baseline schemes are able to
exploit multiuser diversity. To investigate the performance gain
attained by deploying IRSs, we show the system sum secrecy
rate of the proposed scheme for two additional cases: Case 1
with NT = 10 and M = 6 and Case 2 with NT = 6 and
M = 10. We observe that Case 2 results in a larger performance
gain over the system with the default parameters (NT = 6 and
M = 6) compared to Case 1. The reasons behind this are two-
fold. On the one hand, the extra phase shifters can reflect more
power of the signal received from the BS which leads to a power
gain. On the other hand, they also provide higher flexibility in
resource allocation which improves the beamforming gain for
the IRS-user links.

VI. CONCLUSION

In this paper, we proposed an efficient resource allocation
algorithm to achieve secure communication in IRS-assisted mul-
tiuser MISO systems. AN is injected by the BS to enhance phys-
ical layer security. Due to the non-convexity of the formulated
optimization problem, we developed an alternating optimization
algorithm with guaranteed convergence. Our simulation results
reveal that the proposed scheme can significantly enhance
the security of IRS-assisted wireless communication systems
compared to the two baseline schemes, which respectively do
not optimize the IRS phase shift matrix or do not exploit AN.

APPENDIX- PROOF OF THEOREM 1
We note that if Rk − CE

k ≤ 0, the proposed algorithm
would stop transmitting information to user k and allocate the
corresponding power to other users. In this case, the optimal
beamforming vector for user k is w∗

k = 0 which implies
Rank(W∗

k) = 0. Next, for the case where Pmax > 0 and
Rk − CE

k > 0, we show that the optimal beamforming matrix
W∗

k is indeed a rank-one matrix. To start with, we rewrite (15)
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in the following equivalent form:
minimize

Wk,Z∈H
NT ,η,τk,ι

η (25)

s.t. C1,C3,C4, C6: F1 + F2 − G̃1 − G̃2 ≤ η,

C7: τk≥
∑
r∈K

Tr(WrG
H
k uuHGk)+Tr(ZGH

k uuHGk),

C8: ι ≥ Tr(ZLHuuHL),

where F1=− ∑
k∈K

log2(τk + σ2
nk
) and F2=− ∑

k∈K
log2(ι+ σ2

ne
),

and τk and ι are auxiliary optimization variables.
Problem (25) is jointly convex with respect to all optimization

variables. Moreover, it can be verified that Slater’s condition
holds [21]. Therefore, strong duality holds, i.e., we can obtain
the optimal solution of (25) by solving the dual problem [21].
The Lagrangian function of (25) in terms of beamforming
matrix Wk is given by

L= ξ
∑
k∈K

Tr(Wk)−
∑
k∈K

Tr(WkYk )

+κTr
([
∇WG1(W

i,Zi) +∇WG2(W
i,Zi)

]H
(W−Wi)

)
−λk

∑
r∈K

Tr(WrG
H
k uuHGk) + Υ, (26)

where Υ denotes the collection of the optimization variables
of the primal and dual problems and constant terms that are
not relevant to the proof. ξ, κ, and λk denote the scalar
Lagrange multipliers associated with constraints C1, C6, and
C7. Yk ∈ C

NT×NT is the Lagrange multiplier matrix associated
with constraint C4. The dual problem of (15) is given by

maximize
Yk�0,

ξ,κ,λk≥0

minimize
Wk,Z∈H

NT ,
η,τk,ι

L(Wk,Z, η,Yk, ξ, κ, λk). (27)

Then, we investigate the structure of the optimal W∗
k of dual

problem (15) by applying the Karush-Kuhn-Tucker (KKT)
conditions. In particular, the KKT conditions associated with
W∗

k are as follows
K1:ξ∗, κ∗, λ∗

k ≥ 0,Y∗
k � 0, K2:Y∗

kW
∗
k = 0, K3:�W∗

k
L = 0,

(28)
where ξ∗, κ∗, λ∗

k, and Y∗
k denote the optimal Lagrange multi-

pliers for dual problem (27), and �W∗
k
L represents the gradient

vector of (26) with respect to W∗
k. To facilitate the proof, we

rewrite K3 explicitly as follows
Y∗

k = ξ∗INT −Δ, (29)
where Δ is given by

Δ = λ∗GH
k uuHGk

−κ∗
(
∇WG1(W

i,Zi) +∇WG2(W
i,Zi)

)
. (30)

Next, by revealing the structure of matrix Y∗
k, we prove

that the optimal beamforming matrix W∗ is indeed a rank-one
matrix. To start with, we first denote the maximum eigenvalue
of matrix Δ as νmax

Δ ∈ R. We note that the case where multiple
eigenvalues have the same value νmax

Δ occurs with probability
zero, due to the randomness of the channels. Reviewing (29),
if νmax

Δ > ξ∗, then Y∗
k cannot be a positive semidefinite matrix

which contradicts K1. On the other hand, if νmax
Δ < ξ∗, then

Y∗
k must be a positive definite matrix with full rank. In this

case, considering K2, W∗
k is forced to be 0 which is obviously

not the optimal solution for Pmax > 0 and Rk − CE
k > 0. In

addition, we note that there exists at least one optimal solution
with ξ∗ > 0 such that constraint C1 is met with equality.

Therefore, for the optimal solution, the equality νmax
Δ = ξ∗ must

hold which results in Rank(Y∗
k) = NT−1. Next, we construct

a bounded optimal solution based on the above discussion. In
particular, we construct a unit-norm vector emax

Δ ∈ C
NT which

lies in the null space of Y∗
k, i.e., Y∗

ke
max
Δ = 0. We note that

emax
Δ denotes the eigenvector of matrix Δ corresponding to

the maximum eigenvalue νmax
Δ with unit norm. Therefore, for

Pmax > 0 and Rk − CE
k > 0, the optimal beamforming matrix

W∗
k is indeed a rank-one matrix which can be expressed as

W∗
k = ζemax

Δ (emax
Δ )H , where ζ is a parameter to adjust W∗

k
such that constraint C1 is satisfied with equality. �
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Abstract—Intelligent reflecting surfaces (IRSs) are emerging
as promising enablers for the next generation of wireless
communication systems, because of their ability to customize
favorable radio propagation environments. However, with the
conventional passive architecture, IRSs can only adjust the
phase of the incident signals limiting the achievable beamform-
ing gain. To fully unleash the potential of IRSs, in this paper,
we consider a more general IRS architecture, i.e., active IRSs,
which can adapt the phase and amplify the magnitude of the
reflected incident signal simultaneously with the support of an
additional power source. To realize green communication in
active IRS-assisted multiuser systems, we jointly optimize the
reflection matrix at the IRS and the beamforming vector at
the base station (BS) for the minimization of the BS transmit
power. The resource allocation algorithm design is formulated
as an optimization problem taking into account the maximum
power budget of the active IRS and the quality-of-service (QoS)
requirements of the users. To handle the non-convex design
problem, we develop a novel and computationally efficient
algorithm based on the bilinear transformation and inner
approximation methods. The proposed algorithm is guaranteed
to converge to a locally optimal solution of the considered
problem. Simulation results illustrate the effectiveness of the
proposed scheme compared to two baseline schemes. Moreover,
the results unveil that deploying active IRSs is a promising
approach to enhance the system performance compared to
conventional passive IRSs, especially when strong direct links
exist.

I. INTRODUCTION

Future wireless communication systems are envisioned to

provide high data-rate communication services [1]. Inspired

by recent advances in electromagnetic metamaterials, revo-

lutionary new metasurfaces, called intelligent reflecting sur-

faces (IRSs) have been proposed for deployment in conven-

tional communication networks to satisfy this demand [2]. In

particular, comprising a number of programmable elements,

IRSs can be smartly adapted to the channel conditions so as

to proactively customize the radio propagation environment

for enhancing the system performance [3]. Moreover, due

to the passive nature of the reflecting elements, e.g., diodes

and phase shifters, the power required for maintaining the

IRS operation is typically very small [2]. Furthermore,

commonly fabricated as thin rectangular surfaces, IRSs can

be flexibly deployed coexisting with existing infrastructure

and smoothly integrate into conventional communication

systems.

These favorable properties have motivated numerous

works to study IRSs for performance enhancement of con-

ventional communication systems [4]–[6]. Yet, in practice,

the end-to-end path loss of the BS-IRS-receiver link is in

general much larger than that of the unobstructed direct link

due to the double path loss effect [7]. Hence, employing

passive IRSs may not effectively enhance the system per-

formance. To compensate for the severe double path loss in

the cascaded IRS channel, one has to adopt a large passive

IRS comprising hundreds if not thousands of phase shift

elements to achieve a significant passive beamforming gain

[7], [8]. However, deploying a large number of passive IRS

elements significantly increases the signaling overhead for

channel estimation and the complexity of IRS optimization

[4]–[6], which makes the design of IRS-assisted wireless

systems challenging in practice. To circumvent these issues,

the authors of [9] recently proposed a new IRS structure,

namely, active IRSs. In particular, equipped with reflection-

type amplifiers [10], [11], active IRSs can not only reflect

the incident signals by manipulating the programmable IRS

elements, but also amplify the reflected signal with the

support of an extra power supply. We note that active IRSs

are fundamentally different from full-duplex amplify-and-

forward (FD-AF) relays in terms of hardware architecture

and the mode of transmission. Specifically, equipped with

radio frequency (RF) chains, FD-AF relays are able to

receive the incident signal and then transmit it after am-

plification at the expense of self-interference. This process

introduces a delay incurred by the signal processing at the

relay. In contrast, equipped with low-power reflection-type

amplifiers, active IRSs reflect and amplify the incident signal

instantaneously, and the resulting delay between the direct

link and the reflected link is negligibly small compared

to the symbol duration [4]. Moreover, the signals received

at different relay antennas are jointly amplified via an

amplification matrix. In contrast, for active IRSs, the signals

received at different IRS elements are individually amplified.

On the other hand, compared to conventional passive IRSs,

active IRSs can effectively compensate the double path loss

effect without significantly complicating the IRS design [9].

To illustrate this, the authors of [9] studied the joint transmit

and reflect beamforming design for maximization of the

spectral efficiency of an active IRS-assisted multiuser com-

munication system. The resource allocation algorithm design

was formulated as a series of quadratic constraint quadratic

programming (QCQP) problems which were tackled in an

113978-1-6654-5828-3/21/$31.00 ©2021 IEEE Asilomar 2021
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alternating manner. In fact, to realize the potential gains

facilitated by active IRSs, the appropriate amount of power

has to be assigned to each element of the active IRS from

the limited available power. As a result, compared to systems

assisted by conventional passive IRSs, it is more important

to delicately design the BS beamforming such that the power

consumption of the whole system is still affordable and the

quality-of-service (QoS) requirements of the users can be

satisfied. Alternating optimization (AO)-based optimization

frameworks cannot effectively handle the aforementioned

power minimization problem. In particular, such problems

cannot be easily transformed to standard QCQP or second-

order cone program (SOCP) problems with convex con-

straints that can be efficiently solved by employing AO-

based algorithms [4], [9]. Moreover, by dividing the coupled

optimization variables into disjoint groups, AO-based algo-

rithms inevitably eliminate the joint optimality of the BS

beamforming vectors, the IRS amplification factor matrix,

and the IRS phase shift matrix in the considered power

minimization problem, which may lead to unsatisfactory

performance [12]. Besides, for the considered power min-

imization problem, the monotonicity of the objective value

during AO cannot be guaranteed because of the required

Gaussian randomization [6].

Motivated by the above discussion, in this paper, we in-

vestigate the resource allocation algorithm design for active

IRS-assisted communication systems, where the active IRS

can amplify the reflected signal exploiting an additional

power source. To this end, we aim to minimize the transmit

power of the BS by jointly designing the BS beamformers

and the IRS reflection matrix, taking into account the QoS

requirements of the users and the maximum power budget of

the active IRS. Since the optimization variables are highly

coupled in the resulting non-convex optimization problem,

the corresponding globally optimal solution is challenging

to obtain. As a compromise, by capitalizing on bilinear

transformation, inner approximation, and semidefinite relax-

ation, we develop a novel iterative algorithm, which enjoys

low computational complexity. The proposed algorithm is

guaranteed to converge to a locally optimal solution of

the considered problem. Our simulation results reveal that

active IRSs are a promising solution to fully exploit the

potential of IRS-assisted wireless systems, especially when

non-negligible direct links exist.

Notation: Vectors and matrices are denoted by boldface

lower case and boldface capital letters, respectively. RN×M
+

and C
N×M denote the spaces of N × M positive real-

valued matrices and complex-valued matrices, respectively.

ℜ{·} extracts the real part of a complex number. | · | and

|| · || denote the absolute value of a complex scalar and the

Euclidean norm of its argument, respectively. IN refers to

the identity matrix of dimension N . H
N denotes the set

of complex Hermitian matrices of dimension N . AH refers

to the conjugate transpose of matrix A. A � 0 indicates

that A is a positive semidefinite matrix. ||A||F , Tr(A),
and Rank(A) denote the Frobenius norm, the trace, and

BS

Active IRS

User 1

User 2

Power Supply

Fig. 1. An active IRS-assisted communication system consist of one multi-
antenna BS and K = 2 users. The active IRS is supported by a power
supply. The direct links and reflected links between the BS and the users
are denoted by red dashed lines and blue dash lines, respectively.

the rank of matrix A, respectively. diag(a) represents a

diagonal matrix whose main diagonal elements are extracted

from vector a; Diag(A) denotes a vector whose elements

are extracted from the main diagonal elements of matrix

A. E {·} represents statistical expectation.
∆
= and ∼ refer to

“defined as” and “distributed as”, respectively. CN (µ, σ2)
indicates the distribution of a circularly symmetric complex

Gaussian random variable with mean µ and variance σ2. X∗

refers to the optimal value of optimization variable X.

II. SYSTEM MODEL

We consider an active IRS-assisted multiuser multiple-

input single-output (MISO) communication system, cf. Fig-

ure 1. The BS is equipped with NT antennas while all

K users are single-antenna devices. To enhance the perfor-

mance of the considered system, an active IRS is employed

to assist the information transmission from the BS to the

users. In particular, the active IRS is composed of M
elements and is supported by an additional power source.

Equipped with an integrated active reflection-type amplifier,

each IRS element can not only smartly alter the phase of

the incident signals, but also amplify the reflected signal

for effective beamforming. To establish a performance upper

bound for the considered system, we assume that the perfect

channel state information (CSI) of the entire system is

available at the BS. The CSI can be acquired with one of

the existing channel estimation schemes proposed for IRS-

assisted wireless systems [13], [14]. To simplify the notation,

we collect the indices of the users and IRS elements in sets

K = {1, · · · ,K} and M = {1, · · · ,M}, respectively.

In each scheduled time slot, the signal vector x transmitted

by the BS is constructed as follows

x =
∑

k∈K

wkbk, (1)

where wk ∈ C
NT×1 and bk ∈ C denote the beamforming

vector for user k and the corresponding information symbol.

We assume E{|bk|
2} = 1, ∀k ∈ K, without loss of

generality.
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Employing reflection-type amplifiers [10] driven by a

common power supply, the signal reflected and amplified

by the active IRS is given by

y = AΘGx+ AΘd︸ ︷︷ ︸
dynamic noise

+ s︸︷︷︸
static noise

, (2)

where A
∆
= diag(a1, · · · , aM ) ∈ R

M×M
+ and Θ

∆
=

diag(ejψ1 , · · · , ejψM ) ∈ C
M×M denote the amplification

factor matrix and the phase shift matrix of the active IRS,

respectively. Matrix G ∈ C
M×NT denotes the channel

between the BS and the IRS. Moreover, we observe from (2)

that the noises at the IRS can be divided into two categories,

i.e., dynamic noise and static noise [9]. In particular, the dy-

namic noise is generated due to the power amplification [11],

where d ∈ C
NT×1 is modelled as additive white Gaussian

noise (AWGN) with variance σ2
d, i.e., d ∼ CN (0NT

, σ2
dINT

)
[9]. The static noise s ∈ C

NT×1 is modelled as AWGN with

variance σ2
s , i.e., s ∼ CN (0NT

, σ2
sINT

), and it is not affected

by A and its power is usually negligibly small compared to

that of the dynamic noise AΘd [15].

The received signal at user k is given by

rk = (hHD,k + hHR,kAΘG)wkbk︸ ︷︷ ︸
desired signal

+ hHR,kAΘd
︸ ︷︷ ︸

dynamic noise introduced by IRS

+(hHD,k + hHR,kAΘG)
∑

r∈K
r 6=k

wrbr

︸ ︷︷ ︸
multiuser interference

+ nk︸︷︷︸
noise at user k

, (3)

where hD,k ∈ C
NT×1 and hR,k ∈ C

M×1 denote the channel

vectors of the BS-user k link (direct link) and the IRS-user k
link (reflected link), respectively. nk represents the AWGN

at the user k with zero mean and variance σ2
nk

, i.e., nk ∼
CN (0, σ2

nk
).

III. PROBLEM FORMULATION

The received signal-to-interference-plus-noise ratio

(SINR) of user k is given by

Γk = ∣∣∣(hHD,k + hHR,kAΘG)wk

∣∣∣
2

∑
r∈K
r 6=k

∣∣∣(hHD,k+hHR,kAΘG)wr

∣∣∣
2

+ σ2
d

∥∥∥hHR,kAΘ

∥∥∥
2

+ σ2
nk

. (4)

In this paper, we aim to minimize the BS transmit power

while satisfying the QoS requirements of the users and the

maximum power allowance of the active IRS. In particular,

the joint design of the BS beamforming vectors, the IRS

amplification factor matrix, and the IRS phase shift matrix,

i.e., {wk,A,Θ}, is obtained by solving the following opti-

mization problem

minimize
wk,A,Θ

∑

k∈K

‖wk‖
2

s.t. C1: Γreqk
≤ Γk, ∀k,

C2:
∑

k∈K

‖AΘGwk‖
2
+ σ2

d ‖AΘ‖2F ≤ PA. (5)

Here, Γreqk
in constraint C1 is the minimum required SINR

of user k. Constraint C2 indicates that the amplification

power of the active IRS should be less than or equal

to the maximum power allowance PA. We note that the

optimization problem in (5) is non-convex due to the coupled

optimization variables and the fractional constraint C1. Next,

by employing the bilinear transformation and IA, we develop

a iterative low-complexity algorithm which is guaranteed to

converge to a locally optimal solution of the problem in (5).

Remark 1: Compared to passive IRS design, though active

IRS design sidesteps the unit-modulus constraint, it also

introduces the additional non-convex constraint C2 which

aggravates the coupling between the optimization variables.

In fact, for resource allocation design for IRS-assisted sys-

tems, the coupling between the optimization variables is

an unavoidable obstacle. For passive IRSs, such obstacle

is commonly tackled by employing AO-based algorithms

[9], [16] or IA-based algorithms [6]. However, employing

AO-based algorithms destroys the joint optimality of the

optimization variables, which may lead to unsatisfactory

system performance. Moreover, it has been shown in [6] that

for power minimization problems, the commonly adopted

AO-based algorithm with Gaussian randomization is not

guaranteed to generate a monotonically decreasing sequence

of the objective function values during the iterations. On

the other hand, when directly applying IA, the matrix

Θ = diag(ejψ1 , · · · , ejψM ) at the IRS is first transformed

into a vector v = [ejψ1 , · · · , ejψM ]H [16]. Then, a new

optimization variable V is defined as V = vvH , which

imposes three additional constraints on the considered op-

timization problem, i.e., V � 0, Diag(V) = 1, and a

non-convex constraint Rank(V) = 1. In the literature, the

rank-one constraint is usually removed by employing SDR.

However, by doing so, the rank of the obtained solution is

in general larger than one [17]. Alternatively, Rank(V) = 1
can be equivalently transformed into a difference of norm

functions, and then be tackled by a penalty-based algorithm

[18]. However, since the penalty factor cannot be infinitely

large in practice, such an approach can only guarantee a

suboptimal solution. To circumvent these obstacles, in this

paper, for active IRSs, we employ bilinear transformation

and IA and develop a low-complexity iterative algorithm

which is guaranteed to converge to a locally optimal solution

of the optimization problem in (5) [19].

IV. SOLUTION OF THE OPTIMIZATION PROBLEM

A. Bilinear Transformation

Note that matrices A and Θ in (5) always appear in

product form. Hence, we rewrite the product term AΘ

as Ψ = diag(a1e
jψ1 , · · · , aMejψM ) ∈ C

M×M . Then, the

quadratic term σ2
d

∥∥∥hHR,kAΘ

∥∥∥
2

in constraint C1 can be

rewritten as follows

σ2
d

∥∥hHR,kAΘ
∥∥2 = σ2

dTr(Ψ
HHR,kΨ), (6)

where HR,k ∈ C
M×M is defined as HR,k = hR,kh

H
R,k.

To facilitate the application of the IA algorithm, we de-
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fine Wk = wkw
H
k , ∀k, and rewrite the quadratic term∣∣∣(hHD,k + hHR,kΨG)wr

∣∣∣
2

in constraint C1 as follows

∣∣(hHD,k + hHR,kΨG)wr

∣∣2

= hHD,kWrhD,k + hHR,kΨGWrG
HΨHhR,k

+ 2ℜ
{
hHD,kWrG

HΨHhR,k

}

= Tr

([
hR,k

hD,k

] [
hHR,k hHD,k

] [ 0 ΨGWH
r

WrG
HΨH 0

])

+ Tr(HD,kWr) + Tr(ΨGWrG
HΨHHR,k), (7)

where HD,k ∈ C
NT×NT is defined as HD,k = hD,kh

H
D,k.

Then, we recast the optimization problem in (5) equivalently

as follows

minimize
Ψ,Wk∈H

NT

∑

k∈K

Tr(Wk)

s.t. C1: Γk ≥ Γreqk
, ∀k,

C2:
∑

k∈K

Tr(ΨGWkG
HΨH)+σ2

dTr(ΨΨH) ≤ PA,

C3: Wk � 0, ∀k, C4: Rank(Wk) ≤ 1, ∀k. (8)

We note that the coupling between Wk and Ψ in

constraints C1 and C2 and the rank-one constraint C4

are obstacles to solving (8). Next, we take the term

Tr(ΨGWrG
HΨHHR,k) as an example to illustrate how

to construct a convex subset for the non-convex constraint

C1. Note the fact that for arbitrary matrices C and D having

the same dimensions, we have Tr(CD) = 1
2 ‖C+D‖2F −

1
2Tr(C

HC) − 1
2Tr(D

HD). Hence, we first rewrite the

coupling term Tr(ΨGWrG
HΨHHR,k) as follows

Tr(ΨGWrG
HΨHHR,k)

=
1

2

∥∥Ψ+GWrG
HΨHHR,k

∥∥2
F
−

1

2
Tr(ΨHΨ)

−
1

2
Tr(HH

R,kΨGWH
r GHGWrG

HΨHHR,k). (9)

We note that the right-hand side term of (9) contains a

bilinear function of optimization variables Wr and Ψ, i.e.,

GWrG
HΨHHR,k, which is still non-convex. To circum-

vent this challenge, we further define a new optimization

variable Zr = WrG
HΨH , where Zr ∈ C

NT×M . Then, we

introduce the following lemma to transform the constraint

Zr = WrG
HΨH to a more tractable form.

Lemma 1: The equality constraint Zr = WrG
HΨH is

equivalent to the following inequality constraints:

C5:




Ur Zr WrG
H

ZHr Vr Ψ

GWH
r ΨH IM


 � 0, ∀r ∈ K, (10)

C6: Tr
(
Ur −WrG

HGWH
r

)
≤ 0, ∀r ∈ K, (11)

where Ur ∈ C
NT×NT and Vr ∈ C

M×M are auxiliary

optimization variables.

Proof: The equality constraint Zr = WrG
HΨH has a

similar structure as the constraint in [20, Eq. (3)] and Lemma

1 can be proved by closely following the same steps as in

[20, Appendix A]. Due to the space limitation, we omit the

detailed proof of Lemma 1.

B. Inner Approximation

After employing the proposed bilinear transformation, we

can rewrite the right-hand side term of (9) as follows

1

2
‖Ψ+GZrHR,k‖

2
F
−

1

2
Tr

(
ΨHΨ

)

−
1

2
Tr

(
HH

R,kZ
H
r GHGZrHR,k

)
. (12)

We note that the quadratic terms Tr(ΨHΨ) and

Tr(HH
R,kZ

H
r GHGZHR,k) are obstacles for efficient algo-

rithm design. To handle this issue, we construct respective

global underestimators for these terms by employing their

first-order Taylor approximations via the iterative IA ap-

proach. In particular, we have

Tr
(
ΨHΨ

)
≥ Tr

((
2Ψ(j)

)H
Ψ

)
−

∥∥∥Ψ(j)
∥∥∥
2

F
, (13)

Tr
(
HH

R,kZ
H
r GHGZrHR,k

)

≥ Tr

((
2HH

R,kG
HGZ(j)

r HR,k

)H
Zr

)
−
∥∥∥GZ(j)

r HR,k

∥∥∥
2

F
,(14)

where Ψ(j) and Z
(j)
r are intermediate solutions obtained

in the j-th iteration and superscript j denotes the iteration

index of the optimization variables. Moreover, by applying

steps similar to (7), (9), (13), and (14), we construct an

upper bound for the term −
∣∣∣(hHD,k + hHR,kAΘG)wk

∣∣∣
2

in

constraint C1. As a result, a convex subset of constraint

C1 is obtained in constraint C1 which is shown at the

top of the next page. Here, h̃Hk ∈ C
1×(M+NT) is defined

as h̃Hk = [hHR,k hHD,k]. Similarly, constraint C2 can be

approximated by the following convex constraint:

C2:
∑

k∈K

[
1

2
‖Ψ+GZk‖

2
F − Tr

((
GHGZ

(j)
k

)H
Zk

)]

−K

[
Tr

((
Ψ(j)

)H
Ψ

)
−

1

2

∥∥∥Ψ(j)
∥∥∥
2

F
−

1

2

∥∥∥GZ
(j)
k

∥∥∥
2

F

]

+σ2
dTr(ΨΨH) ≤ PA. (16)

On the other hand, we note that constraint C6 is in the

canonical form of a difference of convex functions which

is a non-convex constraint. To tackle this obstacle, again,

we construct a global underestimator of Tr(WrG
HGWH

r ).
Specifically, we have

Tr(WrG
HGWH

r )

≥ −
∥∥∥W(j)

r GH
∥∥∥
2

F
+ 2Tr

(
(GHGW(j)

r )HWr

)
. (17)

Then, constraint C6 can be approximated by the following

convex constraint:

C6: Tr (Ur) +
∥∥∥W(j)

r GH
∥∥∥
2

F

−2Tr
(
(GHGW(j)

r )HWr

)
≤ 0, ∀r ∈ K. (18)

Therefore, the optimization problem to be solved in the

(j + 1)-th iteration of the IA-based algorithm is given by

minimize
Ψ,Wk∈H

NT ,
Zk,Uk,Vk

F (Wk)
∆
=

∑

k∈K

Tr(Wk)
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C1:
Γreqk

2

∑

r∈K\{k}

‖Ψ+GZrHR,k‖
2
F
− [Γreqk

(K − 1)− 1]

[
Tr

((
Ψ(j)

)H
Ψ

)
−

1

2

∥∥∥Ψ(j)
∥∥∥
2

F

]
− Tr(HD,kWk)

−Γreqk

∑

r∈K\{k}

[
Tr

((
HH

R,kG
HGZ(j)

r HR,k

)H
Zr

)
−

1

2

∥∥∥GZ(j)
r HR,k

∥∥∥
2

F

]
−

1

2

∥∥∥GZ
(j)
k HR,k

∥∥∥
2

F

+Γreqk




∑

r∈K\{k}

Tr(HD,kWr) + σ2
dTr(Ψ

HHR,kΨ) + σ2
nk


−

1

2
‖Ψ+GZkHR,k‖

2
F

+Tr
((
HH

R,kG
HGZ

(j)
k HR,k

)
HZk

)
+Tr


h̃kh̃

H
k




0 Γreqk

∑
r∈K\{k}

ZHr −ZHk

Γreqk

∑
r∈K\{k}

Zr−Zk 0





≤0, ∀k.(15)

Algorithm 1 IA-based Algorithm

1: Set initial point W
(j)
k , Ψ(j), Z

(j)
k , U

(j)
k , V

(j)
k , iteration index

j = 1, and error tolerance 0 < ǫ ≪ 1.
2: repeat

3: For given W
(j)
k , Ψ(j), Z

(j)
k , U

(j)
k , V

(j)
k , obtain the inter-

mediate solution W
(j+1)
k , Ψ(j+1), Z

(j+1)
k , U

(j+1)
k , V

(j+1)
k

by solving the rank constraint-relaxed version of problem
(19)

4: Set j = j + 1

5: until
F (W

(j−1)
k

)−F (W
(j)
k

)

F (W
(j)
k

)
≤ ǫ

s.t. C1,C2,C3,C4,C5,C6. (19)

We note that the only obstacle to efficiently solving (19) is

the rank-one constraint C4. To convexify the optimization

problem in (19), we apply SDR and remove constraint C4

from the formulation. Then, the resulting relaxed version

of (19) becomes a standard convex optimization problem

which can be optimally solved by convex program solvers

such as CVX [21]. Next, we introduce the following theorem

to reveal the tightness of SDR.

Theorem 1: Given any positive Γreqk
, the optimal beam-

forming matrix obtained from (19), i.e., W∗
k, is always a

rank-one matrix.

Proof: Problem (19) has a similar structure as [6, Problem

(17)] and Theorem 1 can be proved following the same steps

as in [6, Appendix]. The detailed proof of Theorem 1 is

omitted for brevity. �

We summarize the proposed algorithm in Algorithm 1.

Note that the objective function of (19) is monotonically

non-increasing in each iteration of Algorithm 1. Moreover,

according to [19, Theorem 1], the proposed algorithm is

guaranteed to converge to a locally optimal solution of (5) in

polynomial time. The per iteration computational complexity

of Algorithm 1 is given by O
(
log(1/ǫ)

(
(3K+1)3+(3K+

1)2N2
T+(3K+1)N3

T+(2K+1)3+(2K+1)2M2+(2K+

1)M3
))

, where O (·) is the big-O notation [22, Theorem

3.12] and ǫ is the convergence tolerance of Algorithm 1.

TABLE I
SYSTEM SIMULATION PARAMETERS.

fc Carrier center frequency 2.4 GHz

σ2
k

Noise power at the users −114 dBm

σ2
d

Dynamic noise power −100 dBm [9]

ǫ Convergence tolerance 10
−3

V. SIMULATION RESULTS

In this section, the system performance of the proposed

resource allocation scheme is evaluated via simulations. The

BS is equipped with NT = 4 antennas and serves one

sector of a cell with a radius of R m, where K = 3 users

are randomly and uniformly distributed in this sector. The

active IRS comprises M elements and is deployed at the

edge of the sector. Moreover, the fading coefficients of all

the channels are generated as independent and identically

distributed Rician random variables with Rician factor 3 dB.

In addition, the path loss exponents for the direct links and

the reflected links between the BS and the users are αd and

αr, respectively. For ease of presentation, we assume that

the minimum required SINRs of all users are identical, i.e.,

Γreqk
= Γreq, ∀k. The adopted simulation parameter values

are listed in Table I.

For comparison, we consider two baseline schemes. For

baseline scheme 1, we assume that an IRS is not deployed.

Then, we optimize the beamforming vector wk for min-

imization of the transmit power at the BS. For baseline

scheme 2, we divide the power available at the active IRS,

PA, equally among the IRS elements, i.e., am =
√

PA

M
,

∀m ∈ M, and generate the phases of the IRS elements

in a random manner. Moreover, we adopt zero-forcing (ZF)

beamforming at the BS. Then, we solve a problem similar

to problem (5), where we optimize the power allocated to

user k, i.e., pk ∈ R+.

A. Transmit Power Minimization

In Figure 2, we investigate the average BS transmit

power versus the minimum required SINR of the users for

a scenario where the direct links are severely shadowed

(αd = 3.8). We can observe from Figure 2 that the transmit

power of the proposed scheme and the two baseline schemes
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Fig. 2. Average BS transmit power (dBm) versus minimum required SINR
of the users for K = 3, NT = 4, M = 10, αd = 3.8, αr = 2.3, and
R = 100 m.

monotonically increases with Γreq. This is attributed to the

fact that to satisfy a more stringent minimum SINR require-

ment, the BS has to transmit with a higher power. Yet, the

proposed scheme yields substantial power savings compared

to the two baseline schemes even if we account for the total

transmit power. For example, for Γreq = 4, the proposed

scheme with PA = 10 mW consumes 10(1.5) + 10 ≈ 41.6
mW, while baseline scheme 1 and baseline scheme 2 re-

quire 100 mW and 73.1 mW, respectively. In particular,

for baseline scheme 1, since there is no IRS, there are

no degrees of freedom (DoFs) available for customizing

favorable wireless channels. As for baseline scheme 2, both

the BS and the active IRS cannot fully exploit the DoFs

available for resource allocation due to the partially fixed

beamforming policy and the randomly generated IRS phase

shifts, respectively. This highlights the effectiveness of the

proposed scheme for jointly optimizing the beamformers at

the BS and the active IRS elements. Moreover, as expected,

increasing the maximum power allowance at the active IRS

from 10 mW to 15 mW leads to further transmit power

savings at the BS. This is because the additional power

budget at the active IRS can be utilized to facilitate more

accurate beamforming and to mitigate multiuser interference

in a more effective manner.

B. Energy Efficiency Evaluation

To further investigate the performance of active IRSs,

we also compare with a conventional IRS where the IRS

elements just passively reflect the incident signals without

amplification. In particular, we employ the IA-based algo-

rithm developed in [6] and solve a problem similar to (5)

but replacing constraint C2 with a unit-modulus constraint

induced by the passive IRS. For a fair comparison, we adopt

the energy efficiency (bits/J/Hz) as the performance metric
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Fig. 3. Average energy efficiency versus the number of IRS elements with
K = 3, NT = 4, PA = 20 mW, Γreq = 10 dB, αd = 2.9, αr = 2.3,
and R = 200 m.

which is defined as1 [6, Eq. (19)]

ξ =

∑
k∈K

log2(1 + Γk)

1
η

∑
k∈K

‖wk‖
2
+NTPT + PC +MPI +

1
η
PA

, (20)

where η = 0.5 is the power amplifier efficiency, PT = 100
mW is the circuit power that maintains one BS antenna

element operational, PC = 85 mW is the static circuit power

of the BS [6], PI = 2 mW is the circuit power required to

support one IRS element2 [23], and PA = 20 mW is the

power allowance of the active IRS [9]. Figure 3 illustrates the

average energy efficiency versus the number of IRS elements

for a scenario where the direct links are slightly shadowed

(αd = 2.9). As can be seen from Figure 3, the energy

efficiencies of the proposed scheme, the scheme employing

a conventional IRS, and baseline scheme 2 monotonically

increase with the number of IRS elements. In particular,

due to the low-power consumption of IRS phase shifters,

deploying more IRS elements does not significantly increase

the operational power of the IRS. Moreover, additional IRS

elements introduce extra DoFs that can be exploited to proac-

tively configure the wireless channel which yields transmit

power savings. Besides, for the proposed scheme, additional

IRS elements allow the active IRS to strike a balance be-

tween effectively mitigating the dynamic noise amplification

and amplifying the desired signals. On the other hand, we

observe that the proposed scheme outperforms the scheme

employing a conventional passive IRS and the two baseline

schemes. In particular, for the scenario where the direct

links are slightly shadowed, deploying passive IRSs can not

effectively enhance performance due to the double path loss

effect. In contrast, the proposed scheme employing the active

1We set PA = 0 when computing the energy efficiency of the system
with the conventional passive IRS.

2In this paper, we adopt the same PI for passive and active IRS
elements. Yet, in practice, depending on the specific hardware structure
and components, active IRS elements may consume slightly more power
for supporting the required amplifier [10].
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IRS can simultaneously adjust the phase and the amplitude

of the reflected signal to combat the double path loss effect,

which yields a performance enhancement at the expense of

supplying extra power to the IRS. This observation strongly

motivates the application of active IRSs to further improve

the system performance, especially when the direct links are

not weak.

VI. CONCLUSION

In this paper, we investigated the deployment of active

IRSs, where, unlike conventional passive IRSs, each IRS

element is equipped with an amplifier, and studied the

resulting resource allocation algorithm design problem for

a multiuser communication system. In particular, we jointly

optimized the beamforming vectors at the BS and the IRS

parameters for minimization of the BS transmit power. To

tackle the formulated non-convex optimization problem, we

developed a novel low-complexity algorithm, based on the

bilinear transformation and IA. The developed algorithm

is guaranteed to converge to a locally optimal solution

of the considered problem. Simulation results showed that

the proposed scheme achieves considerable power savings

compared to two baseline schemes. Moreover, our results

revealed that active IRSs are a promising means to combat

the performance degradation caused by the double path loss

effect in IRS-assisted communication systems.

REFERENCES

[1] V. W. S. Wong, R. Schober, D. W. K. Ng, and L. C. Wang, Key

Technologies for 5G Wireless Systems. Cambridge University Press,
2017.

[2] T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamate-
rials, digital metamaterials and programmable metamaterials,” Light:

Science & Applications, vol. 3, no. 10, p. e218, 2014.
[3] X. Yu, V. Jamali, D. Xu, D. W. K. Ng, and R. Schober, “Smart

and reconfigurable wireless communications: From IRS modeling
to algorithm design,” arXiv:2103.07046, accepted for publication in

IEEE Wirel. Commun., 2021.
[4] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless

network via joint active and passive beamforming,” IEEE Trans.

Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Aug. 2019.
[5] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and

C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency
in wireless communication,” IEEE Trans. Wireless Commun., vol. 18,
no. 8, pp. 4157–4170, Aug. 2019.

[6] X. Yu, D. Xu, D. W. K. Ng, and R. Schober, “Power-efficient resource
allocation for multiuser MISO systems via intelligent reflecting sur-
faces,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Taipei,
Taiwan, Dec. 2020, pp. 1–6.

[7] M. Najafi, V. Jamali, R. Schober, and H. V. Poor, “Physics-based
modeling and scalable optimization of large intelligent reflecting
surfaces,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2673–2691, Apr.
2021.

[8] D. Xu, V. Jamali, X. Yu, D. W. K. Ng, and R. Schober, “Optimal
resource allocation design for large IRS-assisted SWIPT systems: A
scalable optimization framework,” arXiv:2104.03346, under revision,
2021.

[9] Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V.
Poor, “Active RIS vs. passive RIS: Which will prevail in 6G?”
arXiv:2103.15154, 2021.
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