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Intelligent reflecting surfaces (IRSs) are emerging as promising enablers for the next generation
of wireless communication systems, because of their ability to customize favorable radio
propagation environments. However, with the conventional passive architecture, IRSs can
only adjust the phase of the incident signals limiting the achievable beamforming gain. To
fully unleash the potential of IRSs, a more general IRS architecture, i.e., active IRSs, has
been proposed in recent works. In particular, equipped with reflection-type amplifiers, active
IRSs can not only reflect the incident signals by manipulating the phase programmable IRS
elements, but also amplify the reflected signal with the support of an extra power supply.

In practice, the total available power of communication systems is limited. On the other
hand, to realize the potential gains facilitated by active IRSs, an appropriate amount of power
has to be assigned to each element of the active IRS from the limited available power. As a
result, compared to systems assisted by conventional passive IRSs, it is more important to
smartly balance the base station (BS) transmit power and the IRS amplification power such
that the quality-of-service (QoS) requirements of the users can be satisfied while guaranteeing
power efficient communication. In this thesis, we consider an active IRS-assisted wireless
communication system and investigate the power efficient resource allocation algorithm design
for the considered communication system. The power efficient resource allocation design is
formulated as a multi-objective optimization problem which jointly minimizes the BS transmit
power and the amplification power at the active IRS. A corresponding optimization algorithm
will be developed in the thesis.
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Figure 1: An active IRS-assisted multiuser communication system.
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Abstract

In this thesis, we investigate resource allocation algorithm design for multiuser Multiple-

Input Single-Output (MISO) wireless communication systems. To enhance the system

performance, an active Intelligent Reflecting Surface (IRS) is deployed in the considered

system. Compared with the conventional passive IRS, active IRS can not only reflect the

signal with the desired phase shift, but also amplify the reflected signal with the sup-

port of an extra power supply. Moreover, to guarantee secure communication, Artificial

Noise (AN) is employed to deliberately impair the channels of the potential eavesdrop-

pers. In practice, the total available power of communication systems is limited. To

realize the potential gains facilitated by active IRS, an appropriate amount of power

has to be assigned to active IRS. We exploit a multi-objective optimization framework

to study two conflicting yet desirable design objectives, i.e., Base Station (BS) transmit

power minimization and active IRS amplification power minimization. To this end, the

weighed Tchebycheff method is adopted to formulate the resource allocation algorithm

design as a multi-objective optimization problem. The considered multi-objective opti-

mization problem takes into account the Quality-of-Service (QoS) of all legitimate users

while guaranteeing secure transmission in the presence of potential eavesdroppers. Al-

though the proposed multi-objective optimization problem is non-convex, we solve it

optimally by employing Semidefinite Relaxation (SDR) and Inner Approximation (IA).

Simulation results not only unveiled the trade-off in resource allocation between the BS

and the active IRS, but also showed that the proposed scheme achieves considerable

power savings compared to the baseline schemes.
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AWGN Additive White Gaussian Noise
BS Base Station
CSI Channel State Information
DoFs Degrees of Freedom
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Chapter 1

Introduction

Over the past few decades, wireless communication has brought tremendous benefits

to society. From 1G to 5G, with the development of technology, the system capacity

has been significantly improved. Currently, researchers are working on the upcoming

Beyond 5G and future 6G wireless networks with the commercialization of 5G communi-

cation networks around the world. Although some technologies such as Multiple-Input

Multiple-Output (MIMO), Ultra-Dense Networks (UDNs), and Terahertz (THz) commu-

nication can significantly improve the wireless communication spectrum and energy

efficiency [1], the high energy consumption and high hardware costs are still critical

issues faced in practical implementations.

Recently, motivated by advances in meta-materials and electromagnetics, a revolu-

tionary technique called IRS has be proposed to overcome above limitations [2]–[6].
Specifically, an IRS is a planar array which comprises a large number of low-cost passive

reflecting elements. With the aid of a smart controller attached to the IRS, each element

can reflect the incident signal with a desired phase shift [7]. By smartly manipulating

the IRS elements, wireless channels can be proactively customized, which can signifi-

cantly improve system performance [5]. In particular, the signals reflected by an IRS can

add constructively or destructively with non-reflected signals to boost the desired sig-

nal power or suppress the co-channel interference, which enhances the communication

performance without the need of deploying additional costly and energy-consuming

communication infrastructures [8]. Compared to the conventional relaying concepts,

where wireless signals are actively produced using costly Radio Frequency (RF) chains,

IRSs only passively reflect signals that are already available in the network and do not

require RF chains. Thus, IRSs are more economical and environmental friendly. Fur-

thermore, IRSs can be flexibly integrated into existing wireless networks by deploying

them on diverse structures, such as roadside billboards, building facades, windows, and

even human clothes [6].
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On the other hand, some works have proposed to deploy IRSs in wireless communi-

cation systems to improve system performance. In [9], [10] the authors developed a

power-efficient resource allocation algorithm design for minimization of the total trans-

mit power for an IRS-aided multiuser MISO system. In [11], the authors propose a

robust resource allocation algorithm design for providing secure high-data rate com-

munication for IRS-assisted wireless communication. The authors of [12] developed

two computationally efficient algorithms for IRS-enabled multi-user wireless communi-

cation, which can achieve a higher spectral efficiency. The authors of [13] proposed

a scalable optimization framework for large IRS-assisted SWIPT system. Thanks to its

high array gain, high flexibility, low cost and low power [14], IRS is expected to im-

prove channel capacity, extend coverage, and reduce power consumption for future 6G

communications [15]–[17].
One of the most important advantages of IRS is the "square-law" array gain. Specifi-

cally, the array gain of N -element IRS is proportional to N 2 and is N times larger than

that achievable with standard large-scale MIMO [3]. However, in practice, the conven-

tional IRS with hundreds of passive elements can only achieve negligible capacity gains

in the typical scenario where the direct link is not weak [18]. In contrast, significant

capacity gains are only observed in atypical communication scenarios where the direct

link between transmitter and receiver is completely blocked or very weak [15]–[17].
The reason for this phenomenon is the "double path loss" effect, i.e., the signal passing

through the reflection link suffer from large-scale fading twice. Specifically, the equiva-

lent path loss of the BS-IRS-receiver link is the product of the path losses of the BS-IRS

link and IRS-receiver link, which is usually thousands of times larger than that of the

direct link [18]. As a result, the "double path loss" effect makes the employment of pas-

sive IRSs in typical wireless environments inefficient in enhancing system performance.

To compensate for the severe double path loss in the reflection link, one has to employ

large passive IRS consisting of hundreds or even thousands of reflecting elements to

achieve significant performance gains [18], [19]. However, deploying a large number

of passive IRS elements significantly increases the complexity of channel estimation and

IRS optimization [17], [20], which makes the design of IRS-assisted wireless systems

challenging in practice. Hence, most existing works on IRS have bypassed this effect by

only considering atypical scenarios with very poor direct links [15]–[17].
To overcome the above issues, the authors of [21] recently proposed the concept of

active IRS. Different from conventional IRS, active IRS can not only reflect the signal

with the desired phase shift, but also amplify the reflected signal with the support of an

extra power supply. In particular, each element of the passive IRS consists of only an

impedance adjustable circuit for phase shifting, while each element of the active IRS is
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additionally equipped with an active reflection-type amplifier. It should be noted that

the active IRS is fundamentally different from the Full-duplex Amplifying and Forward-

ing (FD-AF) relay in the hardware structure and transmission mode. Specifically, the

conventional Amplify-and-Forward (AF) relay requires a power-consuming RF chain and

orthogonal time/frequency resources to receive and transmit power amplified signals.

This process introduces a delay caused by the signal processing at the relay. In contrast,

the active IRS can instantaneously reflect and amplify signals with low-power reflection-

type amplifiers, and the resulting delay between the direct link and the reflection link

is negligible [20]. In [21], the authors investigated the joint transmit and reflect beam-

forming design for maximization of the system capacity of an active IRS-assisted mul-

tiuser communication system. In [21], the authors investigated the joint transmit and

reflective beamforming design for system capacity maximization of active IRS-assisted

multiuser communication systems and proposed a joint precoding algorithm to solve

this problem. Extensive results showed that the existing passive IRS can only achieve

negligible capacity gain of about 3% in the typical application scenario compared to a

benchmark without IRS, while the proposed active IRS can achieve significant capacity

gain of about 129%, thus overcoming the "double path loss" effect. The author of [22]
studied the resource allocation algorithm design for an active IRS-assisted multiuser

communication system. Simulation results unveil that deploying active IRS is a promis-

ing approach to enhance the system performance compared to conventional passive IRS,

especially when strong direct links exist.

However, in practice, the total available power of a communication system is limited.

To realize the potential gains facilitated by active IRS, an appropriate amount of power

must be allocated to each element of the active IRS from the limited available power.

As a result, compared to systems assisted by conventional passive IRSs, it is more impor-

tant to smartly balance the BS transmit power and the active IRS amplification power

while satisfying the QoS requirements of the users and guaranteeing power efficient

communication. Therefore, there is a trade-off in resource allocation between BS and

active IRS, which can be investigated under a multi-objective optimization framework.

In the literature, multi-objective optimization is often adopted to study the trade-off be-

tween conflicting system design objectives via the concept of Pareto optimality. In [23],
the authors investigated a power efficient resource allocation algorithm for full-duplex

systems under a multi-objective optimization framework which unveiled a trade-off be-

tween total downlink and total uplink power consumption. Moreover, secrecy is also a

critical concern for the design of practical wireless communication systems. The con-

ventional approach for securing communications is to perform cryptographic encryption

at the application layer [24], which may entail a relatively high complexity due to the
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required key distribution and service management [25]. As a complement to crypto-

graphic methods, Physical Layer (PHY)-security is an emerging technique to guarantee

secure wireless communication in recent years [26]–[31]. In particular, BS equipped

with multiple antennas can steer their beamforming vectors and inject AN to interfere

the decoding process at the eavesdroppers [32]–[34]. In [35], the authors propose a

thorough analysis and optimization framework for artificial noise assisted secure trans-

mission in a MIMO wiretap channel. In [36], joint transmit signal and AN covariance

matrix optimization was studied for secrecy rate maximization.

Motivated by the above discussion, in this thesis, we consider an active IRS-assisted

wireless communication system and develop a robust resource allocation algorithm de-

sign. To guarantee communication security, we apply AN injection at BS to deliberately

degrade the channels of the eavesdroppers. The power efficient resource allocation

design for the considered system is formulated as a multi-objective optimization prob-

lem which jointly minimizes the BS transmit power and the active IRS amplification

power. The proposed multi-objective optimization problem is formulated by adopting

the weighted Tchebycheff method and solved optimally by employing SDR and IA. The

resulting complete Pareto optimal set corresponds to a set of resource allocation poli-

cies. Thus, the operator can select a proper resource allocation policy from the set of

available policies.

The rest of this paper is organized as follows. In Chapter 2, we present the consid-

ered active IRS-assisted communication system model. In Chapter 3, we introduce the

adopted performance metrics for the considered system model and propose a multi-

objective optimization problem to investigate the trade-off in resource allocation be-

tween the BS and active IRS. In Chapter 4, we first handle the coupling of the optimiza-

tion variables and then recast the optimization problems into convex form. Simulation

results and corresponding analysis are presented in Chapter 5 and the conclusion for

the thesis is summarized in Chapter 6.
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Chapter 2

Systems Model

In this chapter, we present the considered active IRS-assisted communication system

model. Then, we describe the considered system in detail and express the transmit

signal at the BS, the received signals at all the users and potential eavesdroppers, re-

spectively.

We consider an active IRS-assisted MISO communication system, cf. Figure 2.1. In

particular, the BS is equipped with NT > 1 antennas, indexed by N ∆
= {1, · · · , NT},

while all K legitimate users and I potential eavesdroppers are single-antenna devices.

To help establish a favorable propagation environment for secure communication, an

active IRS is deployed to assist information transmission from BS to users while impair-

ing the channels of the potential eavesdroppers. In particular, the active IRS consists

of M phase-shifting elements and each element is additionally equipped with an inte-

grated active reflection-type amplifier supported by an extra power supply. Hence, each

element of active IRS can not only smartly change the phase of the incident signal, but

also amplify the reflected signal for effective beamforming. To simplify the notation, we

define setsM = {1, · · · , M}, K = {1, · · · , K}, and I = {1, · · · , I} to collect the indices

of the acitve IRS elements, the legitimate users, and the potential eavesdroppers, respec-

tively. Besides, to establish a performance upper bound for the considered system, we

assume that the global Channel State Information (CSI) of all users and eavesdroppers

is perfectly known at the BS for resource allocation.

The transmit signal at the BS is given by

x=
∑
k∈K

wk bk + z, (2.1)

where wk ∈ CNT×1 and bk ∈ C denote the beamforming vector for the user k and

the corresponding information bearing symbol. Without loss of generality, we assume

E �|bk|2
	
= 1, ∀k ∈ K . To further enhance the PHY-security of the considered system,

we adopt AN technique in this thesis. In particular, an AN, i.e., z ∈ CNT×1, is generated by
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BS

Active IRS

User 1

User 2

Power Supply

Eavesdropper

Figure 2.1: An active IRS-assisted multiuser communication system.

the BS to deliberately combat the channels of I potential eavesdroppers. Specifically, z is

modelled as a complex Gaussian distribution with z∼CN (0,Z), where Z ∈HNT , Z⪰ 0

is the covariance matrix of the AN. The artificial noise signal z is assumed unknown to

both the users and the eavesdroppers.

With the reflection-type amplifier supported by a power supply, the reflected and

amplified signal of an M -element active IRS can be modeled as follows

y= PΘGx︸ ︷︷ ︸
Desired signal

+ PΘnd︸ ︷︷ ︸
Dynamic noise

+ ns︸︷︷︸
Static noise

, (2.2)

where P ≜ diag (p1, ..., pM) ∈ R+M×M denotes the amplification factor matrix of the ac-

tive IRS, where each element can be larger than one thanks to the integrated active am-

plifier. Θ ≜
�
e jθ1 , ..., e jθM

� ∈ CM×M denotes the phase shift matrix of the active IRS. The

channel between the BS and the active IRS is denoted by matrix G ∈ CM×NT . Moreover,

we note from (2.2) that the introduced noises can be divided into dynamic noise and

static noise [21]. In particular, the the dynamic noise is generated due to the power am-

plification of active IRS [37], nd is modelled as Additive White Gaussian Noise (AWGN),

i.e.,nd ∼ CN
�
0NT

,σ2
dINT

�
. Furthermore, the static noise ns is not affected by power

amplification and is usually negligible compared with the dynamic noise PΘnd [38].
Without loss of generality, we assume here ns ∼CN

�
0NT

,σ2
s INT

�
.

The received signals at user k, eavesdropper i are given by, respectively,
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rk =
�
hH

k + fH
k PΘG

�
wk bk︸ ︷︷ ︸

Desired signal

+
�
hH

k + fH
k PΘ

� ∑
r∈K \{k}

wr br︸ ︷︷ ︸
Multiuser interference

+
�
hH

k + fH
k PΘG

�
z︸ ︷︷ ︸

Artificial noise

+ fH
k PΘnd︸ ︷︷ ︸

Dynamic noise introduced by active IRS

+ nk︸︷︷︸
Noise introduced at user k

, (2.3)

ri =
�
hH

i + fH
i PΘG

��∑
r∈K

wk bk + z

�
+ fH

i PΘnd + ni, (2.4)

where hk ∈ CNT×1 and fk ∈ CM×1 denote the channel vector between the BS and user

k and the channel vector between the active IRS and user k, respectively. The channel

vector between the BS and eavesdropper i and the channel vector between eavesdropper

i and the active IRS are denoted by hi ∈ CNT×1 and fi ∈ CM×1, respectively. nk and ni

denote the AWGN at user k and eavesdropper i, respectively. We assume here nk ∼
CN �

0,σ2
nk

�
and ni ∼CN

�
0,σ2

ni

�
.
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Chapter 3

Optimization Problems Formulation

In this chapter, we first define the adopted system performance metrics for the con-

sidered multiuser communication system. Then in Sections 3.2 and 3.3, we study the

problem formulation of two desirable system design objectives for the considered active

IRS-assisted communication system. Finally, we investigate these two system objectives

jointly under the framework of multi-objective optimization in Section 3.4.

3.1 Performance Metrics

The received Signal-to-Interference-plus-Noise Ratio (SINR) at user k is given by

Γk =

���hH
k + fH

k PΘG
�
wk

��2∑
r∈K \{k}

���hH
k + fH

k PΘG
�
wr

��2 + ���hH
k + fH

k PΘG
�
z
��2 +σ2

d



fH
k PΘ



2
+σ2

nk

. (3.1)

On the other hand, the received SINR at eavesdropper i wiretapping user k, i.e., Γ EVE
i,k ,

is given by

Γ EVE
i,k =

���hH
i + fH

i PΘG
�
wk

��2∑
r∈K \{k}

���hH
i + fH

i PΘG
�
wr

��2 + ���hH
i + fH

i PΘG
�
z
��2 +σ2

d



fH
i PΘ



2
+σ2

ni

. (3.2)

3.2 Base Station Transmit Power Minimization

The first considered objective is designed to minimize the total BS transmit power

which is comprised of the transmit signal power and the AN power while satisfying the

QoS requirements of all users and guaranteeing the SINR of potential eavesdroppers
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does not exceed the maximum tolerance. In particular, we focus on the following opti-

mization problem

P1 : minimize
wk ,P,Θ,Z∈HNT

∑
k∈K
∥wk∥2 + Tr (Z) (3.3)

s.t. C1:

���hH
k + fH

k PΘG
�
wk

��2∑
r∈K \{k}

���hH
k + fH

k PΘG
�
wr

��2 + ���hH
k + fH

k PΘG
�
z
��2 +σ2

d



fH
k PΘ



2
+σ2

nk

≥ Γreqk
, ∀k,

C2:

���hH
i + fH

i PΘG
�
wk

��2∑
r∈K \{k}

���hH
i + fH

i PΘG
�
wr

��2 + ���hH
i + fH

i PΘG
�
z
��2 +σ2

d



fH
i PΘ



2
+σ2

ni

≤ Γ EVE
reqi,k

, ∀i, ∀k,

C3: Z⪰ 0.

Here, Γreqk
in constraint C1 is the minimum required SINR of user k. Γ EVE

reqi,k
in constraint

C2 indicates the maximum tolerant SINR of the potential eavesdropper i for wiretapping

user k. Constraint C3 and Z ∈ HNT are imposed since covariance matrix Z has to be a

Hermitian positive semidefinite matrix. We note that the objective of Problem 1 is to

minimize the total BS transmit power under constraints C1-C3 without regard for the

amplification power consumed by the active IRS. Moreover, due to the highly coupled

optimization variables, Problem 1 is non-convex.

In some papers [8], [21], such resource allocation optimization problems are usually

solved by employing Alternating Optimization (AO)-based algorithms. However, by

doing so, it destroys the joint optimality of the optimization variables. Moreover, it has

been shown in [10] that the AO-based algorithms can converge to either the optimal

solution or a large number of saddle points which may lead to unsatisfactory system

performance. To preserve joint optimality, we employ an IA-based algorithm which is

guaranteed to converge to a locally optimal solution of (3.3) [22]. The details of IA will

be presented in Chapter 4.

3.3 Active IRS Amplification Power Minimization

For the second desirable system objective, we focus on minimizing the amplification

power of active IRS under constraints C1-C3 without taking into account the BS transmit

power. The optimization problem is formulated as follows

P2 : minimize
wk ,P,Θ,Z∈HNT

∑
k∈K
∥PΘGwk∥2 +σ2

d ∥PΘ∥2 (3.4)

s.t. C1 : Γk ≥ Γreqk
, ∀k, C2 : Γ EVE

i,k ≤ Γ EVE
reqi,k

, ∀k,∀i

C3: Z⪰ 0.
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Due to the coupling of the optimization variables, the optimization problem in (3.4)

is non-convex. Similarly, we apply the IA-based algorithm to obtain a locally optimal

solution of (3.4).

3.4 Multi-Objective Optimization

The two above system design objectives are achievable for the BS and the active IRS,

respectively. However, in practice, the total available power of communication systems

is limited. On the other hand, to realize the potential gains facilitated by active IRS, an

appropriate amount of power must be allocated to active IRS from the limited available

power. Hence, there is a trade-off in resource allocation between BS and active IRS.

Furthermore, it is important to smartly balance the BS transmit power and the active IRS

amplification power while satisfying QoS requirements of the users and guaranteeing

the secure communication.

To address above issue, we resort to multi-objective optimization. In the literature,

multi-objective optimization is often adopted to investigate the trade-off between con-

flicting system design objectives via the concept of Pareto optimality [39],[40]. In the

feasible objective space, a point is Pareto optimal if there is no other point that improves

at least one of the objectives without degrade the others. In order to capture the com-

plete Pareto optimal set, we formulate the third optimization problem to investigate the

trade-off between Problem 1 and Problem 2 by using the weighted Tchebycheff method

[29],[39]. The resulting problem formulation is given as:

P3 : minimize
wk ,P,Θ,Z∈HNT

max
i=1,2

�
λi

�
Li − L∗i

�	
(3.5)

s.t. C1−C3,

where L1 =
∑

k∈K
∥wk∥2 + Tr (Z) and L2 =

∑
k∈K
∥PΘGwk∥2 +σ2

d ∥PΘ∥2. L∗i is the optimal

objective value of the i-th problem. In particular, variable L∗i is assumed to be a constant

for resource allocation. The variable λi ≥ 0,
∑

i λi = 1 is used to indicate the priority

of the i-th objective compared to the other objectives, while reflecting the preference of

the communication system designer. By varying λi, we can obtain the complete Pareto

optimal set which corresponds to a set of resource allocation policies. As a result, we

can select a proper resource allocation policy for communication system design from

the set of available policies. Compared to other approaches for solving multi-objective

optimization problems in the literature (e.g. the weighted product method, the exponen-

tially weighted criterion, and the ε-constraint method [39]), the weighted Tchebycheff

method can obtain the complete Pareto optimal set with a lower computational com-
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plexity for convex and non-convex optimization problems . Furthermore, we note that

Problem 3 is equivalent to Problem i when λi = 1 and λ j = 0 ∀i ̸= j, which means that

both problem formulations have the same optimal solution.
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Chapter 4

Solution of the Optimization Problems

In this chapter, in order to solve the above problems efficiently, we employ bilinear

transformation and IA and develop a low-complexity iterative algorithm which is guar-

anteed to converge to locally optimal solutions of the optimization problems in (3.3)

and (3.4) [22]. For the multi-objective optimization problem in (3.5), we employ the

weighted Tchebycheff method to investigate the trade-off in resource allocartion be-

tween Problem 1 and Problem 2.

4.1 Bilinear Transformation

Since the matrices P and Θ in (3.3) always appear in product form, we rewrite the

product term PΘ as Φ = diag(p1e jθ1 , ..., pM e jθM ). Then, the quadratic term σ2
d



fH
k PΘ



2

in constaint C1 can be rewritten as follows

σ2
d



fH
k PΘ



2
= σ2

dTr
�
ΦHFkΦ

�
, (4.1)

where Fk ∈ CM×M is defined as Fk = fkf
H
k . To facilitate resource allocation algorithm

design, we define Wk = wkw
H
k , ∀k, and rewrite the quadratic term

���hH
k + fH

k ΦG
�
wr

��2
in constraint C1 as: ���hH

k + fH
k ΦG

�
wr

��2
= hH

k Wrhk + fH
k ΦGWrG

HΦHfk + 2ℜ�hH
k WrG

HΦHfk

	
= Tr (HkWr) + Tr

�
ΦGWrG

HΦHFk

�
+Tr

��
fk

hk

��
fH
k hH

k

�� 0 ΦGWH
r

WrG
HΦH 0

��
, (4.2)
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where Hk ∈ CNT×NT is defined as Hk = hkh
H
k . Similarly, we rewrite the quadratic term���hH

k + fH
k PΘG

�
z
��2 as: ���hH

k + fH
k ΦG

�
z
��2

= hH
k Zhk + fH

k ΦGZGHΦHfk + 2ℜ�hH
k ZGHΦHfk

	
= Tr (HkZ) + Tr

�
ΦGZGHΦHFk

�
+Tr

��
fk

hk

��
fH
k hH

k

�� 0 ΦGZH

ZGHΦH 0

��
, (4.3)

where Z ∈HNT , Z⪰ 0 is the covariance matrix of the AN.

Then, the BS transmit power minimization problem in (3.3) can be equivalently re-

formulated as

minimize
Φ,Wk∈HNT ,Z∈HNT

∑
k∈K

Tr (Wk) + Tr (Z) (4.4)

s.t. C1: Γk ≥ Γreqk
, ∀k, C2: Γ EVE

i,k ≤ Γ EVE
reqi,k

, ∀k

C3: Z⪰ 0, C4: Wk ⪰ 0, ∀k, C5: Rank (Wk)≤ 1, ∀k.

On the other hand, we can recast the active IRS amplification power minimization prob-

lem in (3.4) as follows

minimize
Φ,Wk∈HNT ,Z∈HNT

∑
k∈K

Tr
�
ΦGWkG

HΦH
�
+σ2

dTr
�
ΦΦH

�
(4.5)

s.t. C1 : Γk ≥ Γreqk
, ∀k, C2 : Γ EVE

i,k ≤ Γ EVE
reqi,k

, ∀k

C3: Z⪰ 0, C4: Wk ⪰ 0, ∀k, C5: Rank (Wk)≤ 1, ∀k.

We note that problems (4.4) and (4.5) are still non-convex due to the coupled Wk and

Φ involved in constraints C1 and C2 and the non-convex rank-one constraint C5. To

overcome these obstacles, we take the term Tr
�
ΦGWrG

HΦHFk

�
in (4.2) as an example

to interpret how to construct a convex approximation for the non-convex constraint

C1. Before handling the highly-coupled non-convex constraint C1, we first have the

following lemma.

Lemma 1: For any two Hermitian matrices A ∈ H and B ∈ H having the same size,

we have the following two equalities:

Tr (AB) =
1
2
∥A+B∥2F − 1

2
Tr
�
AHA

�− 1
2

Tr
�
BHB

�
. (4.6)
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Proof : The right-hide side term of (4.6) can be rewritten as

1
2
∥A+B∥2F − 1

2
Tr
�
AHA

�− 1
2

Tr
�
BHB

�
=

1
2

Tr
�
(A+B)H (A+B)

�− 1
2

Tr
�
AHA

�− 1
2

Tr
�
BHB

�
=

1
2

Tr
�
AHA

�
+

1
2

Tr
�
AHB

�
+

1
2

Tr
�
BHA

�
+

1
2

Tr
�
BHB

�− 1
2

Tr
�
AHA

�− 1
2

Tr
�
BHB

�
=

1
2

Tr
�
AHB

�
+

1
2

Tr
�
BHA

� (a)
= Tr (AB)

where (a) is due to the fact that A and B are Hermitian matrices.

Based on Lemma 1, the coupling term Tr
�
ΦGWrG

HΦHFk

�
in (4.2) can be rewritten

as

Tr
�
ΦGWrG

HΦHFk

�
=

1
2



Φ+GWrG
HΦHFk



2

F − 1
2

Tr
�
ΦHΦ

�
−1

2
Tr
�
FH

k ΦGWH
r GHGWrG

HΦHFk

�
. (4.7)

We note that the right-hand side term of (4.7) is non-convex, since it contains bilinear

functions of optimization variables Wr and Φ. To tackle this issue, we define a new

optimization variable Ur = WrG
HΦH , where Ur ∈ CNT×M . Next, we transform Ur =

WrG
HΦH into a more tractable form by exploiting the following lemma.

Lemma 2: The equality constraint Ur = WrG
HΦH is equivalent to the following in-

equalities constraints with the auxiliary variables Xr and Yr:

C6:

 Xr Ur WrG
H

UH
r Yr Φ

GWH
r ΦH IM

⪰ 0,∀r ∈K , (4.8)

C7: Tr
�
Xr −WrG

HGWH
r

�≤ 0,∀r ∈K . (4.9)

where Xr ∈ CNT×NT and Yr ∈ CM×M .

Proof : Before proving the Lemma 2, we first prove the following lemma [41].
Lemma 3: For given matrix A and positive definite matrix B of size n×m and m×m,

respectively, one has �
0 A

A
T

B

�
⪰ 0, (4.10)

if and only if A= 0.
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Proof : If A = 0, since B is positive definite, then (4.10) obviously holds. Next, we

prove that if (4.10) holds, then A = 0. First, the block matrix in (4.10) is positive

semidefinite implying that

2xT Ay+ yT By≥ 0, ∀x ∈ Rn,∀y ∈ Rm. (4.11)

Now, for A= 0, the block matrix in (4.10) is obviously positive semidefinite. Conversely,

if A ̸= 0, we can always find a x such that the block matrix is not positive semidefinite.

Specifically, if there is Ai j ̸= 0, we assume x such that xk = 0 for k ̸= i and y such that

yl = 0 for l ̸= j. Then (4.11) gives

2Ai jxiy j + B j jy
2
j ≥ 0, ∀ �xi, y j

�T ∈ R2. (4.12)

However, for every y j ̸= 0, we can select x i = −B j j+1

2Ai j
y j which makes the left hand side

of (4.12) negative. Hence, we can always construct cases for Ai j ̸= 0 which violate the

positive semidefinite condition. The proof of Lemma 3 is completed.

Next, we present the proof of Lemma 2. By applying Schur’s complement [42], con-

straint C6 in (4.8) is equivalent to�
Xr Ur

UH
r Yr

�
−
�
WrG

H

Φ

��
GWH

r ΦH
�
=

�
Xr −WrG

HGWH
r Ur −WrG

HΦH

UH
r −ΦGWH

r Yr −ΦΦH

�
⪰ 0, (4.13)

which implies that Xr −WrG
HGWH

r ⪰ 0. Combined with constraint C7 in (4.9), we can

derive Xr −WrG
HGWH

r = 0. Then, applying lemma 3 to (4.13) yields Ur = WrG
HΦH ,

which completes the proof of Lemma 2.

4.2 Inner Approximation

Based on Lemma 2, the term Tr
�
ΦGWrG

HΦHFk

�
in (4.7) can be rewritten as follows

Tr
�
ΦGWrG

HΦHFk

�
=

1
2
∥Φ+GUrFk∥2F − 1

2
Tr
�
ΦHΦ

�− 1
2

Tr
�
FH

k UH
r GHGUrFk

�
. (4.14)

We note that the quadratics terms Tr
�
ΦHΦ

�
and Tr

�
FH

k UH
r GHGUrFk

�
in (4.14) are non-

convex, which are obstacles for efficient algorithm design. To tackle this issue, we em-



17

ploy first-order Taylor approximation to handle the quadratic terms via the iterative IA

approach [22]. In particular, we have

Tr
�
ΦHΦ

�≥ Tr
��

2Φ( j)
�H
Φ
�− 

Φ( j)

2

F , (4.15)

Tr
�
FH

k UH
r GHGUrFk

�≥ Tr
��

2FH
k GHGU( j)r Fk

�H
Ur

�− 

GU( j)r Fk



2

F , (4.16)

where Φ( j) and U( j)r are the feasible solution obtained in the j-th iteration. Hence, we

can construct a convex upper bound for the term
���hH

k + fH
k ΦG

�
wr

��2 as follows���hH
k + fH

k ΦG
�
wr

��2
= Tr (HkWr) + Tr

�
ΦGWrG

HΦHFk

�
+Tr

��
fk

hk

��
fH
k hH

k

�� 0 ΦGWH
r

WrG
HΦH 0

��
≤ Tr (HkWr) +

1
2
∥Φ+GUrFk∥2F

−Tr
��
Φ( j)

�H
Φ
�
+

1
2



Φ( j)

2

F +
1
2



GU( j)r Fk



2

F

−Tr
��

FH
k GHGU( j)r Fk

�H
Ur

�
+ Tr

��
fk

hk

��
fH
k hH

k

�� 0 UH
r

Ur 0

��
. (4.17)

Similarly,
���hH

k + fH
k ΦG

�
z
��2 in constraint C1 can be rewritten as���hH

k + fH
k ΦG

�
z
��2 = Tr (HkZ) + Tr

�
ΦGZGHΦHFk

�
+Tr

��
fk

hk

��
fH
k hH

k

�� 0 ΦGZH

ZGHΦH 0

��
. (4.18)

Furthermore, the coupling term Tr
�
ΦGZGHΦHFk

�
in (4.18) can be rewritten as

Tr
�
ΦGZGHΦHFk

�
=

1
2



Φ+GZGHΦHFk



2

F − 1
2

Tr
�
ΦHΦ

�
−1

2
Tr
�
FH

k ΦGZHGHGZGHΦHFk

�
. (4.19)

We note that the right-hand side term of (4.19) is non-convex, since it contains bilinear

functions of optimization variables Z and Φ. Similarly, we define a new optimization
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variable Q = ZGHΦH , where Q ∈ CNT×M . Based on Lemma 2, the equality constraint

Q= ZGHΦH can be transformed into the following inequalities constraints:

C8:

 M Q ZGH

QH N Φ

GZH ΦH IM

⪰ 0, (4.20)

C9: Tr
�
M− ZGHGZH

�≤ 0, (4.21)

where M ∈ CNT×NT and N ∈ CM×M are auxiliary variables. Then, we construct the convex

upper bound for the term
���hH

k + fH
k ΦG

�
z
��2 as follows���hH

k + fH
k ΦG

�
z
��2

≤ Tr (HkZ) +
1
2
∥Φ+GQFk∥2F − Tr

��
Φ( j)

�H
Φ
�
+

1
2



Φ( j)

2

F +
1
2



GQ( j)Fk



2

F

−Tr
��

FH
k GHGQ( j)Fk

�H
Q
�
+ Tr

��
fk

hk

��
fH
k hH

k

��0 QH

Q 0

��
. (4.22)

As a result, constraint C1 can be approximated by following convex constraint:

cC1 : Γreqk

 ∑
r∈K \{k}

Tr (HkWr) + Tr (HkZ) +σ
2
dTr

�
ΦHFkΦ

�
+σ2

nk

!
− Tr (HkWk)

+
Γreqk

2

∑
r∈K \{k}
∥Φ+GUrFk∥2F −

�
KΓreqk

− 1
��

Tr
��
Φ( j)

�H
Φ
�− 1

2



Φ( j)

2

F

�
−Γreqk

∑
r∈K \{k}

�
Tr
��

FH
k GHGU( j)r Fk

�H
Ur

�− 1
2



GU( j)r Fk



2

F

�
+
Γreqk

2
∥Φ+GQFk∥2F − Γreqk

�
Tr
��

FH
k GHGQ( j)Fk

�H
Q
�− 1

2



GQ( j)Fk



2

F

�
−1

2
∥Φ+GUkFk∥2F + Tr

��
FH

k GHGU( j)k Fk

�H
Uk

�
− 1

2




GU( j)k Fk




2

F

+Tr

vkv
H
k

 0 Γreqk

� ∑
r∈K \{k}

UH
r +QH

�
−UH

k

Γreqk

� ∑
r∈K \{k}

Ur +Q

�
−Uk 0


≤ 0,∀k,(4.23)

where vH
k ∈ C1×(M+NT) is defined as vH

k =
�
fH
k hH

k

�
.
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Similarly, constraint C2 can be approximated by the following constraint:

cC2 : Tr (HiWk) +
1
2
∥Φ+GUkFi∥2F −

�
1− KΓ EVE

reqi,k

��
Tr
��
Φ( j)

�H
Φ
�− 1

2



Φ( j)

2

F

�
+Γ EVE

reqi,k

∑
r∈K \{k}

�
Tr
��

FH
i GHGU( j)r Fi

�H
Ur

�− 1
2



GU( j)r Fi



2

F

�
− Tr

��
FH

i GHGU( j)k Fi

�H
Uk

�
+

1
2




GU( j)k Fi




2

F
− Γ EVE

reqi,k

 ∑
r∈K \{k}

Tr (HiWr) + Tr (HiZ) +σ
2
dTr

�
ΦHFiΦ

�
+σ2

nk

!

−Γ
EVE
reqi,k

2

∑
r∈K \{k}
∥Φ+GUrFi∥2F −

Γ EVE
reqi,k

2
∥Φ+GQFi∥2F + Γ EVE

reqi,k

�
Tr
��

FH
i GHGQ( j)Fi

�H
Q
�− 1

2



GQ( j)Fi



2

F

�

+Tr

viv
H
i

 0 UH
k − Γ EVE

reqi,k

� ∑
r∈K \{k}

UH
r +QH

�
Uk − Γ EVE

reqi,k

� ∑
r∈K \{k}

Ur +Q

�
0


≤ 0,∀i,∀k, (4.24)

where vH
i ∈ C1×(M+NT) is defined as vH

i =
�
fH
i hH

i

�
.

On the other hand, we note that constraint C7 and C9 are in the form of the dif-

ference of convex functions which are non-convex constraints. To address this issue,

we construct the first-order Taylor approximation of Tr
�
WrG

HGWH
r

�
and Tr

�
ZGHGZH

�
.

Specifically, we have

Tr
�
WrG

HGWH
r

�≥ −

W( j)
r GH



2

F + 2Tr
��

GHGW( j)
r

�H
Wr

�
, (4.25)

Tr
�
ZGHGZH

�≥ −

Z( j)GH


2

F + 2Tr
��

GHGZ( j)
�H

Z
�

. (4.26)

Then, constraints C7 and C9 can be approximated by the following convex constraints:

cC7 : Tr (Xr) +


W( j)

r GH


2

F − 2Tr
��

GHGW( j)
r

�H
Wr

�≤ 0,∀r ∈K , (4.27)

cC9 : Tr (M) +


Z( j)GH



2

F − 2Tr
��

GHGZ( j)
�H

Z
�≤ 0. (4.28)

4.3 Transformed Problems

In the (j+1)-th iteration of the IA-based algorithm, the first desirable system objective,

i.e., the BS transmit power minimization problem in (4.4) is reformulated as follows

P1 : f1 (Wk,Z)
∆
=minimize

Φ,Wk ,Z,Uk ,
Xk ,Yk ,Q,M,N

∑
k∈K

Tr (Wk) + Tr (Z) (4.29)

s.t. cC1,cC2, C3, C4, C5, C6,cC7, C8,cC9.
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We note that the only non-convexity of the optimization problem in (4.29) is the rank-

one constraint C5.

On the other hand, for the second considered system objective, i.e., the active IRS am-

plification power minimization problem in (4.5), we handle the non-convex constraints

C1 and C2 in the same way as we tackled them in Problem 1. Then, due to the non-

convexity of the objective function, we further define a slack variable t and recast the

optimization problem in (4.5) as follows:

minimize
Φ,Wk ,t,Z,Uk ,

Xk ,Yk ,Q,M,N

t +σ2
dTr

�
ΦΦH

�
(4.30)

s.t. cC1,cC2, C3, C4, C5, C6,cC7, C8,cC9,

C10 :
∑
k∈K

Tr
�
ΦGWkG

HΦH
�≤ t.

To facilitate resource allocation algorithm design, we employ IA to approximate non-

convex constraint C10 as follows

ÔC10 :
∑
k∈K

�
1
2
∥Φ+GUk∥2F − Tr

��
GHGU( j)k )

�H
Uk

�
+

1
2




GU( j)k




2

F

�
−K

�
Tr
��
Φ( j)

�H
Φ
�− 1

2



Φ( j)

2

F

�
+σ2

dTr
�
ΦΦH

�≤ t (4.31)

Therefore, in the (j+1)-th iteration of the IA-based algorithm, we focus on the following

optimization problem

P2 : minimize
Φ,Wk ,t,Z,Uk ,

Xk ,Yk ,Q,M,N

t +σ2
dTr

�
ΦΦH

�
(4.32)

s.t. cC1,cC2, C3, C4, C5, C6,cC7, C8,cC9,ÔC10.

The transformed Problem 2 is non-convex due to the rank-one constraint C5.

Regarding the multi-objective optimization problem, we can equivalently reformulate

it as follows

P3 : minimize
Φ,Wk ,t,Z,Uk ,
Xk ,Yk ,Q,M,N,η

η (4.33)

s.t. cC1,cC2, C3, C4, C5, C6,cC7, C8,cC9,ÔC10,

C11 : λi

�
Li − L∗i

�≤ η,∀i ∈ {1, 2} .

where η is an auxiliary optimization variable, and constraint C11 is the epigraph repre-

sentation [43] of (3.5). The remaining non-convex constraint in (4.33) is the rank-one
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constraint C5. Solving such a rank-constrained problem is known to be NP-hard [44].
To overcome this obstacle, we remove rank-one constraint C5 by adopting SDR method.

Then, the relaxed version of Problem 1, 2 and 3 are standard convex optimization prob-

lems and can be efficiently solved by convex program solvers such as CVX [45]. Next,

taking the Problem 1 as an example, we verify the tightness of SDR by introducing the

following theorem.

Theorem 1: If Γreqk
> 0, the optimal beamforming matrix W∗k obtained from (4.29) is

always a rank-one matrix, i.e., Rank(W∗k) = 1.

Proof: By relaxing the rank-one constraint C5 in problem (4.29), the remaining prob-

lem is jointly convex with respect to the optimization variables and satisfies the Slater’s

constraint qualification. Therefore, strong duality holds and the Lagrangian function of

the relaxed version of the optimization problem in (4.29) is given by

L =
∑
k∈K

Tr(Wk) +
∑
k∈K
δkΓreqk

∑
r∈K \{k}

Tr (HkWr)−
∑
k∈K
δkTr (HkWk)

+
∑
i∈I
µi

∑
k∈K

Tr (HiWk)−
∑
i∈I
µi

∑
k∈K
Γ EVE

reqi,k

∑
r∈K \{k}

Tr (HiWr)−
∑
k∈K

Tr (Υ kWk)

−∑
k∈K

Tr

Ψk

 Xk Uk WkG
H

UH
k Yk Φ

GWH
k ΦH IM


− 2

∑
k∈K
τkTr

��
GHGW( j)

k

�H
Wk

�
+Λ,(4.34)

where Λ denotes the terms which are irrelevant to Wk. Variables δk, µi and τk are the

Lagrange multipliers associated with constraints cC1, cC2 and C7, respectively. Matrices

Υ k ⪰ 0 and Ψk ⪰ 0 are the Lagrange multipliers associated with the constraints C5 andcC6 with respect to matrix Wk, respectively. Therefore, the dual problem for the relaxed

version of the optimization problem in (4.29) is given by

maximize
Υ k ,Ψk⪰0,
δk ,µ j ,τk≥0

minimize
Φ,Wk ,Z,Uk ,
Xk ,Yk ,Q,M,N

L (Φ,Wk,Z,Uk,Xk,Yk,Q,M,N,Υ k,Ψk,δk,µ j,τk). (4.35)

Then, we follow a similar approach as proposed in [46]–[48], to investigate the structure

of the optimal W∗k by examining the Karush-Kuhn-Tucker (KKT) conditions for problem

(4.29), which are given by:

δ∗k,µ∗j ,τ
∗
k ≥ 0,Υ ∗k,Ψ∗k ⪰ 0, (4.36)

Υ ∗kW
∗
k = 0, (4.37)

ÏW∗kL = 0, (4.38)
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where δ∗k,µ∗j ,τ
∗
k ≥ 0, Υ ∗k, and Ψ∗k are the optimal Lagrange multipliers for dual problem

(4.35), andÏW∗kL denotes the gradient of Lagrangian function with respect to W∗k. With

some basic algebraic operations, the KKT condition in (4.38) can be rewritten as

Υ ∗k = INT
−∆∗k, (4.39)

where

∆∗k = δ
∗
kHk−

∑
r∈K \{k}

δ∗rΓreqr
Hr +2D∗kG+2τ∗kG

HGW( j)
k −

∑
i∈I
µ∗i Hi+

∑
i∈I
µ∗i
∑

r∈K \{k}
Γ EVE

reqi,r
Hi, (4.40)

and Dk is obtained from Ψk. The derivation of Dk is as follows:

We denote the constraint cC6 in (4.8) as Ωk ⪰ 0,∀k, where Ωk ∈ C(NT+2M)×(NT+2M).

Since Ψk ⪰ 0 is the Lagrange multiplier matrix associated with the constraints cC6 with

respect to Wk, Ψk has the same dimensions as Ωk. We note that all the elements of Ωk

are matrices, and then we partition Ψk into multiple matrices. In particular, we have

Ψk =

Ak Bk Dk

BH
k Ck Fk

DH
k FH

k Ek

 ,∀k, (4.41)

where Ψk ∈ C(NT+2M)×(NT+2M) and each matrix has the same dimension as the correspond-

ing matrix in Ωk. Then, we rewrite the term
∑

k∈K
Tr

Ψk

 Xk Uk WkG
H

UH
k Yk Φ

GWH
k ΦH IM


 in (4.34)

as follows:

∑
k∈K

Tr


Ak Bk Dk

BH
k Ck Fk

DH
k FH

k Ek


 Xk Uk WkG

H

UH
k Yk Φ

GWH
k ΦH IM




=
∑
k∈K

Tr


AkXk +BkU

H
k +DkGWH

k · · · · · ·
· · · BH

k Uk +CkYk + FkΦ · · ·
· · · · · · DH

k WkG
H + FH

k Φ+ EkIM




=
∑
k∈K

Tr
�
AkXk+BkU

H
k +DkGWH

k +BH
k Uk+CkYk+FkΦ+DH

k WkG
H+ FH

k Φ+ EkIM

�
.(4.42)

Then, we take the derivative of (4.42) with respect to W∗k and the result is 2D∗kG.

Next, by unveiling the structure of matrix Υ ∗k, we show that the optimal W∗k always

satisfies Rank(W∗k) ≤ 1. We first reveal that ∆∗k is a positive semidefinite matrix by
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Algorithm 1 Inner Approximation Algorithm

1: Take Problem 1 as an example, set initial point W( j)
k , Φ( j), Z( j), U( j)k , X( j)k , Y( j)k , Q( j),

M( j) and N( j), iteration index j = 1, and error tolerance 0≤ ϵ ≤ 1;
2: repeat
3: For given W( j)

k , Φ( j), Z( j), U( j)k , X( j)k , Y( j)k , Q( j), M( j) and N( j), obtain the intermediate
solution W( j+1)

k , Φ( j+1), Z( j+1), U( j+1)
k , X( j+1)

k , Y( j+1)
k , Q( j+1), M( j+1) and N( j+1) by solving

the rank constraint-relaxed version of problem (4.29);
4: Set j = j + 1;

5: until
f (W( j−1)

k ,Z( j−1))− f (W( j)k ,Z( j))

f (W( j)k ,Z( j))
≤ ϵ.

contradiction. Specifically, if ∆∗k is a negative definite matrix, according to (4.39), then

Υ ∗k must be a full-rank positive definite matrix. Considering the KKT condition in (4.37),

it implies that W∗k = 0, which cannot be an optimal solution for Γreqk
> 0. Hence, ∆∗k

must be a positive semidefinite matrix. Since the matrix Υ ∗k is also positive semidefinite,

we have

1≥ νmax
∆∗k
≥ 0 (4.43)

where 1 ≥ νmax
∆∗k
≥ 0 denotes the maximum eigenvalue of matrix ∆∗k. However, due to

the randomness of the channels, the case where multiple eigenvalues have the same

value of νmax
∆∗k

occurs with probability zero. For the case where νmax
∆∗k
> 1, according to

(4.39), the obtained matrix Υ ∗k is not positive semidefinite, which contradicts the KKT

condition in (4.36). On the other hand, if νmax
∆∗k
≤ 1, then the Υ ∗k is a positive semidefinite

matrix with Rank(Υ ∗k)≥ NT −1. Considering (4.37), this leads to Rank(W∗k)≤ 1, which

completes the proof.

Note that the relaxed version of (4.29) and (4.32) are convex optimization problems,

and the proposed IA-based algorithm for solving them is summarized in Algorithm 1.

According to [49, Theorem 1], the objective functions in (4.29) and (4.32) are non-

increasing in each iteration and the proposed algorithm is guaranteed to converge to

the locally optimal solutions of (3.3) and (3.4) in polynomial time. The per iteration

computational complexity of Algorithm 1 is given by O (log(1/ϵ)((3(K+ I)+1)3+(3(K+
I)+ 1)2N 2

T )+(3(K+ I)+1)N 3
T +(2(K+ I)+1)3+(2(K+ I)+1)2M2+(2(K+ I)+1)M3)),

where O (·) is the big-O notation and ϵ is the convergence tolerance of Algorithm 1.
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Chapter 5

Simulation Results

In this chapter, we evaluate the system performance of the proposed resource alloca-

tion scheme via simulations. In particular, we assume that the BS serves one sector of

a cell with a radius of R = 50 m and the active IRS with M elements is deployed at the

edge of the cell. The K = 3 users and I = 2 potential eavesdroppers are randomly and

uniformly distributed in the sector. The channel matrix G between the BS and active

IRS is modeled as

G=
p
ι0Rα(

s
κ

1+κ
GL +

√√ 1
1+ κ

GN), (5.1)

where ι0 = (
λc
4π)

2 is a constant with λc being the wavelength of the carrier frequency

and α is the path loss exponent. The small-scale fading is assumed to be Rician fading

with Rician factor κ = 3 dB. GL and GN are the line-of-sight (LoS) and non-LoS com-

ponents, respectively. The LoS component is the product of the receive and transmit

array response vectors while the non-LoS component is modeled by Rayleigh fading.

The channel vectors between the active IRS and all users and between the active IRS

and the eavesdroppers are generated in a similar manner as G. In addition, the path

loss exponents for the direct links and the reflection links between BS and users and

between BS and eavesdroppers are αd and αr , respectively. For the ease of presentation,

we assume that the minimum required SINRs of all users and eavesdroppers are identi-

cal, i.e., Γreqk
= Γreq and Γ EVE

i,k = Γ
EVE
req . The important system parameters adopted in our

simulations are listed in Table.5.1.

To show the effectiveness of the proposed scheme, we also consider three baseline

schemes for comparison. For baseline scheme 1, we adopt simple design choices with-

out performing iterative optimization. In particular, we adopt Maximum Ratio Trans-

mission (MRT) for transmit beamforming, apply AN injection at the BS , and implement

the IRS with random phases. For baseline scheme 2, we optimize the beamforming

vectors wk for minimization of the power consumption and apply an isotropic radiation

pattern for AN injection at the BS. For baseline scheme 3, to further investigate the per-
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Table 5.1: System Parameters in Simulations

Carrier center frequency fc 2.4 GHz
Number of antenna elements NT 4
Path loss exponent for direct links αd 3.5
Path loss exponent for reflection links αr 2.3
Noise power at users σ2

k −90 dBm
Dynamic noise power σ2

d −100 dBm [21]
Error tolerance factor ϵ 0.001

formance of active IRS, we consider a conventional IRS-assisted system in which the IRS

elements just passively reflect the incident signals without amplification. In particular,

we optimize the beamforming vectors wk and apply AN injection at the BS.

5.1 Trade-off between BS Transmit Power and Active

IRS Amplification Power

In Fig.5.1, we study the trade-off between the BS transmit power and the active IRS

amplification power for different QoS requirements of users. The trade-off region is

obtained by solving (4.33) for different 0 ≤ λi ≤ 1,∀i ∈ {1, 2}, i.e., the λi are varied

uniformly using a step size of 0.025 subject to
∑

i λi = 1. It can be observed from

Fig.5.1 that the average active IRS amplification power is a monotonically decreasing

function with respect to the average BS transmit power. In other words, minimizing

the the average active IRS amplification power consumption leads to a higher power

consumption in the BS and vice versa. This result confirms that the minimization of the

total BS transmit power and the active IRS amplification power are conflicting objectives.

For a power-limited communication system, there is a trade-off in resource allocation

between BS and active IRS. For the case of Γk = 4 dB, 8.8 dB in BS transmit power can

be saved by increasing the average active IRS amplification power by 6.8 dB. Moreover,

Fig.5.1 also indicates that the BS and the active IRS have to consume more power to

satisfy a higher SINR requirement of users. Furthermore, each curve corresponds to

a set of resource allocation policies. Thus, the operator can select a proper resource

allocation policy from the set of available policies based on the actual requirements.

We can also observe from Fig.5.1 that the proposed scheme yields substantial power

savings compared to the two baseline schemes. In particular, for baseline scheme 1, both

the BS and the active IRS cannot fully exploit the Degrees of Freedom (DoFs) available

for resource allocation due to the fixed MRT beamforming policy and the randomly gen-

erated IRS phase shifts, respectively. As for baseline scheme 2, the performance loss
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compared to the proposed scheme is mainly due to the fixed AN design. This highlights

the effectiveness of the proposed scheme for jointly optimizing the transmit beamform-

ing vectors, AN covariance matrix, and the active IRS elements.
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Figure 5.1: Trade-off between average BS transmit power (dBm) and average active IRS
amplification power (dBm) for different resource allocation schemes with
K = 3, I = 2, NT = 6, M = 10, αd = 3.5, αr = 2.3, R = 50 m and Γ EVE

req = 2
dB.

5.2 BS Transmit Power vs. Minimum Required SINR

In Fig.5.2, we investigate the average BS transmit power versus the minimum re-

quired SINR at the users, Γreqk
. We select the resource allocation policy with λ1 = 0.7

and λ2 = 0.3 which indicates that the system operator attaches a higher priority to BS

transmit power minimization. As can be observed from Fig.5.2 that, the average BS

transmit power of all the schemes monotonically increases with Γreqk
. This is due to the

fact that, as Γreqk
increases, the BS has to transmit with a higher power to satisfy the

QoS of the users. Moreover, we observe that the proposed scheme consumes less trans-

mit power compared to that of the two baseline schemes. In particular, the significant

power savings is achieved by the joint optimization of the transmit beamforming vec-

tors, AN covariance matrix, and the active IRS elements. On the other hand, increasing

the number of transmit antennas and IRS elements further saves the BS transmit power.

This is due to the fact that the extra degrees freedom offered by the additional anten-
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Figure 5.2: Average BS transmit power (dBm) vs. minimum required SINR of the users
different resource allocation schemes with K = 3, I = 2, NT = 6, M = 10,
αd = 3.5, αr = 2.3, R= 50 m and Γ EVE

req = 2 dB.

nas and active IRS elements facilitate a more power efficient resource allocation which

yields transmit power savings. On the contrary, the two baseline schemes require huge

power consumption. Specifically, for baseline scheme 1, the fixed MRT beamforming is

unable to fully exploit the DoFs introduced by the active IRS elements. In fact, the MRT

strategy fails to mitigate multiuser interference, resulting in poor performance. As for

baseline scheme 2, due to the the fixed AN design, the BS has to consume more power

to satisfy the QoS of all the users and guarantee the secure communication.

5.3 Energy Efficiency vs. Number of IRS Elements

IRSs are recognized as energy-efficient devices for improving communication perfor-

mance. To further investigate the performance of active IRSs, we adopt the energy

efficiency (bits/J/Hz) as the performance metric which is defined as [50, Eq.(19)]

ξ=

∑
k∈K

log2 (1+ Γk)

1
η

� ∑
k∈K
∥wk∥2 + Tr (Z)

�
+ NTPT + PC +M PI +

1
ηPA

, (5.2)

where η = 0.5 is the power amplifier efficiency, PT = 100mW is the circuit power that

maintains one BS antenna element operational, PC = 85mW is the static circuit power of
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req = 2 dB.

the BS, PI = 2mW is the circuit power required to support one IRS element, and PA is the

power allocated to the active IRS. Fig.5.3 illustrates the average energy efficiency versus

the number of active IRS elements for a scenario where the direct links are slightly shad-

owed (αd = 2.9). As can be observed from Fig.5.3, increasing the number of active IRS

elements leads to an improvement of the energy efficiency for all schemes. In particular,

due to the low-power consumption of IRS phase shifters, deploying more IRS elements

does not significantly increase the operational power of the IRS. Moreover, additional

IRS elements introduce extra DoFs that can be exploited to create a more favorable

propagation environment which allows a further reduction of the transmit power. On

the other hand, we observe that the proposed scheme outperforms the three baseline

schemes. This is because the proposed scheme is able to fully exploit the extra DoFs

by jointly optimizing both the beamforming vectors, the AN covariance matrix and the

active IRS elements which effectively facilitates more accurate beamforming and saves

more transmit power. For the baseline scheme 1, the fixed MRT beamforming policy

is unable to fully exploit the extra DoFs introduced by additional IRS elements, which

leads to an insignificant improvement in energy efficiency. As for the baseline scheme

3, deploying passive IRS can not effectively enhance performance due to the double

path loss effect, especially when the direct links are not weak. In contrast, employing

the active IRS can simultaneously adjust the phase and the amplitude of the reflected



30 Chapter 5 Simulation Results

signal to combat the double path loss effect. This observation strongly encourages the

application of active IRSs to further improve the system performance.
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Chapter 6

Conclusion

In this thesis, we investigated resource allocation algorithm design for multiuser MISO

wireless communication systems. To overcome the "double path loss" effect introduced

by conventional IRSs, we deployed an active IRS in the considered system to improve

the system performance. Different from the conventional IRS that just passively reflects

signals without amplification, the key feature of active IRSis the capability of actively

reflecting signals with amplification at the expense of additional power consumption.

To guarantee communication security, we applied AN injection at BS to deliberately

degrade the channels of the eavesdroppers. However, the total available power of com-

munication systems is limited. We need to smartly allocate power to the BS transmit

power and the IRS amplification power while satisfying the QoS requirements of the

users. To this end, we exploited a multi-objective optimization framework to study the

trade-off in resource allocation between two conflicting yet desirable design objectives,

i.e., BS transmit power minimization and active IRS amplification power minimization.

We adopted weighted Tchebycheff method to formulate the multi-objective optimization

problem. Although the proposed multi-objective optimization problem is non-convex,

we solve it optimally by employing SDR and IA.

Simulation results not only unveiled the trade-off in resource allocation between the

BS and the active IRS, but also showed that the proposed scheme achieves considerable

power savings compared to the baseline schemes. Moreover, our results revealed that

active IRSs are a promising means to overcome the double path loss effect in conven-

tional IRS-assisted communication systems and motivates the application of active IRSs

to further improve the system performance.
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