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Security is a crucial issue for wireless communication due to the broadcast nature of the wire-
less medium. Recently, physical layer security has received significant attention for prevent-
ing eavesdropping in wireless communication systems. An important technique to facilitate
physical layer security is multiple-antenna transmission which utilizes the spatial degrees of
freedom for degrading the quality of the eavesdroppers’ channels. In particular, on the one
hand, information beamforming is performed for limiting the information leakage to eaves-
droppers. On the other hand, artificial noise transmission is employed to deliberately impair
the information reception at the eavesdroppers.

The system secrecy throughput is a significant performance measure for secure wireless com-
munications. However, most of the literature in this field proposed suboptimal resource
allocation schemes for the maximization of the system secrecy throughput and the optimal
resource allocation design for secure wireless communication is still an open problem. Moti-
vated by this, in this thesis, we aim to investigate the optimal resource allocation algorithm
design for a multiuser communication system with the objective to maximize the system
secrecy throughput. The resulting system performance shall be compared against existing
suboptimal resource allocation schemes in the literature.
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Figure 1: Information beamforming.
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Figure 2: Artificial noise generation.

Main guidelines for the work:

• Development of the system model for guaranteeing secure transmission in multiuser
wireless communication systems by means of the information beamforming

• Optimization problem formulation and algorithm design for optimal resource allocation
in the considered secure communication systems

• If possible, extension to the case of concurrent artificial noise transmission to further
improve the system secrecy throughput
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Abstract

In this thesis, we study resource allocation in multiuser wireless communication

systems. In particular, we focus on secure downlink transmission in presence of poten-

tial eavesdroppers. The resource allocation design aims to maximize the sum secrecy

throughput of the considered system by jointly optimizing the downlink beamformer

and artificial noise. The algorithm design results in a non-convex optimization problem.

Besides, the problem formulation also includes quality-of-service requirement which

imposes a minimum required signal-to-interference-plus-noise ratio at active users. De-

spite the non-convexity of the considered problem formulation, we solve it optimally by

employing monotonic optimization theory. In particular, we obtain the globally optimal

solution of the considered problem via adopting a polyblock outer approximation algo-

rithm. Considering the high computational complexity of the proposed optimal scheme,

a suboptimal resource allocation scheme based on a successive convex approximation

algorithm is developed to achieve the balance between optimality and efficiency. Further-

more, we investigate an extensional case where imperfect channel state information of

the multiple potential eavesdroppers is taken into account. In view of the intractability

of the optimization problem, we reformulate the considered problem by replacing a

semi-infinite constraint with a tractable constraint involving a finite number of linear

matrix inequalities and then propose an optimal resource allocation scheme to maximize

the robust sum secrecy throughput of the considered case. The simulation results confirm

that the proposed optimal resource allocation scheme achieves significant sum secrecy

throughput improvement compared to the two baseline schemes. Besides, our results

also show that the proposed algorithm is robust against the imperfectness of the channel

state information of the eavesdroppers.



x



xi

Glossary

Abbreviations

AF Amplify-and-Forward
AN Artificial Noise
AWGN Additive White Gaussian Noise
BF Beamforming
BS Base Station
CSI Channel State Information
DCP Difference of Convex Programming
DoF Degree of Freedom
KKT Karush-Kuhn-Tucker
LMIs Linear Matrix Inequalities
MIMO Multiple-Input Multiple-Output
MO Monotonic Optimization
MRT Maximum Ratio Transmission
MUI Multiuser Interference
POA Polyblock Outer Approximation
PHY Physical Layer
QoS Quality-of-Service
SDP Semidefinite Programming
SCA Successive Convex Approximation
SINR Signal-to-Interference-plus-Noise Ratio
SST Sum Secrecy Throughput
ZF-BF Zero-Forcing Beamforming

Operators
∆
= Defined as
R The set of all real numbers
C The set of all complex numbers
RN×1 The set of all real-valued vectors
RN×1
+ The set of all non-negative real-valued vectors
CN×1 The set of all complex-valued vectors
RN×M The set of all N ×M real-valued matrices
CN×M The set of all N ×M complex-valued matrices
HN The set of all N × N Hermitian matrices
IN The N × N identity matrix
x ∈ S x is a member of the set S



xii Glossary

∀x Means that a statement holds for all x
xH Conjugate transpose of x
|x | Absolute value of a complex scalar x
||x|| Euclidean norm of a vector x
[x]+ Stands for max{0, x}
Tr(A) The trace of matrix A
Rank(A) Rank of a matrix A
A� 0 Means matrix A is positive semidefinite
E {x} Statistical expectation of random variable x
x ∼X (·) The random variable x has distribution X (·)
CN (µ,R) The circularly symmetric complex Gaussian distribution

with mean µ and covariance matrix R

Symbols

dk Information bearing signal to active use k
δ Optimal solution approximation factor in projection bisection search

algorithm
Γk Received SINR at active user k
Γ E

m,k Received SINR at idle user m for eavesdropping active user k
Γreq Minimum required SINR for active users
hk Channel vector between the base station and active user k
K Number of active users
lm Channel vector between the base station and idle user m
blm Channel estimate of idle user m available at the base station
∆lm Channel uncertainty of idle user m
M Number of idle users
MOPA Maximum iteration in polyblock outer approximation algorithm
MSCA Maximum iteration in successive convex approximation algorithm
NT Number of antennas at the base station
Ωm Channel state information uncertainty set of idle user m
Pmax Maximum transmit power at the base station [dBm]
pk Gain for the channel between the base station and the k-th active user
πG (x) Projection of vector x on set G
Rk Achievable rate of active user k [bit \ s \Hz]
R Achievable sum rate of [bit \ s \Hz]
RE

m,k Achievable rate of idle user m for eavesdropping desired active user
k [bit \ s \Hz]

RSec
k Achievable secrecy rate of active user k [bit \ s \Hz]

RSec Achievable sum secrecy rate [bit \ s \Hz]
ε Optimal solution tolerance factor in polyblock outer approximation

algorithm
v Artificial noise vector
V Artificial noise covariance matrix
wk Beamforming vector for active use k
wkn The n-th element of beamforming vector for active use k



xiii

x Combined transmit signal vector
xk Transmit signal to active user k
yk Received signal at active user k
yE

m Received signal at idle user m



xiv



1

Chapter 1

Introduction

Secure transmission, an old but pivotal issue in radio frequency communication systems,

has been raised for nearly 90 years [1]. Due to the free propagation of electromagnetic

waves in wireless communication systems, all users receive the information signal from

the Base Station (BS) via a broadcast channel. In most wireless communication systems,

data encoding and encryption techniques in upper layers have been widely adopted to

prevent wiretapping. However, these techniques are not flexible enough since codebooks

are necessary to be stored in advance at the receivers to decode the desired information,

and they are meaningless once the codebooks are stolen by eavesdroppers. Moreover,

these techniques may become invalid since today’s new computing technologies (e.g.

quantum computing) can decipher the encryption. These disadvantages spur people to

explore more applicable and effective techniques to achieve security. Recently, much

work have be done to achieve security in Physical Layer (PHY) [2]–[4]. Specifically, the

aim of PHY-security is to ensure a positive secrecy rate of the desired user by exploiting

wireless Channel State Information (CSI). To make it attainable, the quality of the desired

user’s channel is required to be better than the eavesdroppersâĂŹ. However, in reality,

this condition may be violated due to the randomness of channel fading. Conventionally,

one possible way to improve PHY-security of a multiple-input single-output system is to

utilize the extra spatial Degree of Freedom (DoF) to design Beamforming (BF) vectors at

the multiple antenna transmitter [5], [6]. This technique facilitates the transmit signal

stream to focus on the intended userâĂŹs direction while reducing the information signal

leakage to eavesdroppers.

Lately, a more flexible and effective technique to impair the quality of eavesdroppers’

channels with an intentionally generated noise has also been proposed [7]. The basic idea

of Artificial Noise (AN) is generating a noise signal which is able to deliberately degrade

the quality of the eavesdroppers’ channels [8], [9]. In particular, AN is yielded based on

the CSI of the eavesdroppers at the BS. For instance, if the CSI of the eavesdroppers is

hardly available at the BS, one simple but effective scheme is to generate an isotropic AN
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[7] which is uniformly distributed on the nullspace of the active users’ channels. Based

on BF and AN, many resource allocation algorithms have been proposed to achieve

PHY-security. The authors of [10] proposed a suboptimal resource allocation algorithm

for maximizing the Sum Secrecy Throughput (SST) of a multiuser communication

system with a single eavesdropper. In [11], the authors considered a simple Amplify-

and-Forward (AF) scheme to achieve the maximization of the AF secrecy rate in a

unicast communication over multi-hop wireless relay networks. The authors of [12]
derived a lower bound for the ergodic secrecy rate of a given user under the condition

where matched filter data precoding and AN transmission are employed in a downlink

massive Multiple-Input Multiple-Output (MIMO) systems in the presence of a passive

multiple-antenna eavesdropper. However, the above-mentioned resource allocation

algorithms are suboptimal for maximizing the secrecy rate under the assumption that the

considered wireless communication system contains only one eavesdropper. Therefore,

they are not applicable for achieving optimal secrecy throughput in a multiuser wireless

communication system in the presence of multiple eavesdroppers.

Recently, robust resource allocation algorithm design for multiuser wireless commu-

nication systems has attracted much attention since perfect CSI of all the users are not

always accessible at the BS. In particular, the CSI of the active users is assumed to be

perfectly known at the BS. The is due to the fact that these users constantly interact

with the BS in each scheduling time slot, and their channel estimations are relatively

seasonable and precise. Yet, this assumption may not be true when we consider the

potential eavesdroppers. In multiuser wireless communication systems, there are mainly

two categories of potential eavesdroppers, i.e., idle users and passive eavesdroppers. On

the one hand, idle users are legitimate users who are already registered in the system.

However, they may badly behave themselves and attempt to overhear the information

signals for the desired active users. On the other hand, passive eavesdroppers are illegiti-

mate users who remain silent in the system, wherefore the BS may not be aware of their

existence. Thus, the CSI of these potential eavesdroppers are usually supposed to be

partially available at the BS. In [13], the authors designed a robust resource allocation

algorithm to maximize the achievable secrecy rate with respect to a single-antenna

legitimate receiver based on formulating a tightened relaxation convex optimization

problem. The authors of [14] solved the resource allocation optimization problem of

maximizing the SST in a user-eavesdropper pair wiretapping model by employing a first-

order approximation technique based on Taylor expansion. However, we note that the

proposed resource allocation algorithms in [10]–[14] solve the optimization problems

in a way which aims to formulate the objective function and the constraints into a form

of a convex function, and the formulation procedures are lengthy and complicated. As a
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result of this, Monotonic Optimization (MO), a more general and flexible optimization

approach, is proposed [15] to facilitate succinct algorithm design for resource allocation

optimization problems. Moreover, many resource allocation optimization problems in

wireless communication systems can be classified into MO problems and efficaciously

solved [16]–[22]. In [22], the authors proposed a monotonic optimization and semidef-

inite programming algorithm to maximize the SST with the help of an AF relay in a

multiple-source multiple-destination network in the presence of multiple eavesdroppers.

However, maximizing the SST of a multiuser downlink system which consists of multiple

active users and multiple potential eavesdroppers with imperfect CSI at the BS, is still

an open problem.

In this thesis, we aim to optimally solve the resource allocation optimization problem of

maximizing the SST in a multiuser wireless communication system. In particular, we first

formulate an MO problem and then design an optimal resource allocation algorithm based

on Polyblock Outer Approximation (POA) to maximize the SST in the considered system

model in presence of perfect CSI of all users at the BS. Due to the high computational

complexity of the proposed optimal scheme, a suboptimal resource allocation algorithm

based on Successive Convex Approximation (SCA) is posed to achieve the balance

between optimality and computational complexity. Furthermore, we extend to a more

practical case where the multiuser wireless communication system contains multiple

eavesdroppers whose CSI are imperfect at the BS, and the previously mentioned optimal

resource allocation algorithm is modified and adapted to the considered optimization

problem to achieve the optimal solution.

The rest of the thesis is structured as follows. In Chapter 2, we present the considered

multiuser wireless communication system model and then discuss the CSI of two different

kinds of users. In Chapter 3, we introduce the adopted performance metrics for the

considered system model and formulate the resource allocation optimization problem.

In Chapter 4, we propose an optimal scheme and a suboptimal scheme to solve the

formulated problem. In Chapter 5, we design a resource allocation algorithm to obtain the

optimal solution in an extensional case where the optimization problem involves multiple-

eavesdropper with imperfect CSI at the BS. Simulation results and corresponding analysis

are presented in Chapter 6. Chapter 7 concludes the thesis and poses interesting future

work.
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Chapter 2

Multiuser System Model

In this chapter, we present the considered multiuser wireless communication system

model. In Section 2.1, we describe the considered system in detail and then express the

transmit signal at the BS, received signals at both active users and idle users, respectively.

In Section 2.2, we discuss the CSI of different types of users and give the corresponding

reasons.

2.1 Multiuser Downlink Channel Model

We adopt a multiuser communication system downlink model which contains a BS, K

active users, and M idle users, cf. Fig. 2.1. The BS is equipped with NT > 1 antennas. All

K+M users are single-antenna devices and are able to decode information from transmit

signal. In each scheduling time slot, active users receive a signal stream consisting

of all the desired user signals from the BS while the idle users remain silent but are

able to receive the signal stream during the transmission period. However, if the idle

users are insidious, and then they may eavesdrop the information signal of the desired

user. In consequence, we consider the idle users as potential eavesdroppers which

have to be taken into account for a resource allocation algorithm design to guarantee

communication security.

At the beginning of each time slot, the BS transmits a signal stream consisting of K

independent information signals to K active users. Specifically, the transmit signal to

active user k ∈ {1, · · · , K} can be expressed as

xk =wkdk, (2.1)

where dk ∈ C and wk ∈ CNT×1 are the information bearing signal to active use k and

the corresponding beamforming vector, respectively. Without loss of generality, we

assume E
�

|dk|
2
	

= 1, ∀k ∈ {1, · · · , K}. Moreover, we adopt AN technique in this thesis
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•   Base station
•   NT antennas

• Active user
• Single antenna

• Idle user
• Potential eavesdropper
• Single antenna

• Idle user
• Potential eavesdropper
• Single antenna

Figure 2.1: Illustration of the considered system model comprising K = 2 active users
and M = 2 idle users.

to improve the PHY-security of the considered system. Hence, the transmit signal vector,

containing K information signals and AN, is expressed by

x=
K
∑

k=1

xk + v, (2.2)

where v ∈ CNT×1 denotes the AN vector generated by the BS to intentionally degrade the

channels of the m potential eavesdroppers. In particular, v follows a complex Gaussian

distribution where v ∼ CN (0,V) with V ∈ HNT , V � 0 representing the covariance

matrix of the AN.

On the other hand, the received signal at active user k ∈ {1, . . . , k} and idle user

m ∈ {1, . . . , m} are given by, respectively

yk = hH
k xk +

K
∑

i 6=k

hH
k xi

︸ ︷︷ ︸

Multiuser interference

+ hH
k v

︸︷︷︸

Artificial noise

+nk, (2.3)

y E
m =

K
∑

k=1

lH
mxk + lH

mv
︸︷︷︸

Artificial noise

+nm, (2.4)

where hk ∈ CNT×1 is the channel vector between the BS and active user k ∈ {1, · · · , K},
and lm ∈ CNT×1 is the channel vector between the BS and idle user m ∈ {1, · · · , M},
respectively. We assume all the channels are slowly time-varying frequency flat fading
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channel. We note that variables hk and lm collect the effects of the path loss, shadowing

and multipath fading of the corresponding frequency flat fading channels. Besides, nk

and nm include background noises and thermal noises resulting from the receive antennas

at active user k and idle user m, respectively. We model them as Additive White Gaussian

Noise (AWGN) which follow the same complex normal distribution with zero mean and

variance σ2
n.

2.2 Channel State Information

The active users send handshaking signals to the BS at the beginning of each scheduling

time slot. Based on these signals, the BS is able to obtain the CSI to facilitate downlink

transmission. Thus, the channel between the BS and active user k, hk, ∀k ∈ {1, · · · , K},
can be reliably estimated at the BS with negligible estimation errors. In addition,

automatic repeat request protocol is considered in data link layer to guarantee fluent and

timely estimations of hk. Therefore, we can assume perfect CSI for the channel between

the BS and active user k ∈ {1, · · · , K} during the whole transmission period. However,

an idle user does not constantly interact with the BS, and this leads to an outdated and

inaccurate CSI estimation of the channel between the BS and the idle user m, i.e., lm,

∀m ∈ {1, · · · , M}. To capture this effect, a deterministic model proposed in [21], [23] is

adopted in this thesis to represent the resulting CSI uncertainty. The channel vector lm

between the BS and idle user m is given by

lm = blm +∆lm, m ∈ {1, · · · , M} , (2.5)

Ωm =
�

∆lm ∈ CNT×1 :∆lH
m∆lm ≤ ε2

m

	

, (2.6)

where blm ∈ CNT×1 is the channel estimate of idle user m available at the BS at the

beginning of a time slot. ∆lm represents the unknown channel uncertainty of idle user

m due to the slow timing varying nature of the channel. A set Ωm is defined in (6),

and it contains all the possible CSI uncertainties of idle user m. It should be noted

that we model the CSI uncertainty region as a hyperball with the radius εm > 0 in a

NT-dimensional space, and εk indicates the size of the uncertainty region of the estimated

CSI of idle user. Additionally, a larger εm means less CSI of idle user m can be obtained at

the BS. In practice, the value of ε2
m > 0 depends on the coherence time of the associated

channel and the time between channel estimation and packet transmission.
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Chapter 3

Optimization Problem Formulation

In this chapter, we formulate the resource allocation optimization problem. In Section

3.1, we define the system sum rate and sum secrecy rate as the performance metrics.

Then, the optimization problem for maximizing the SST of the considered system is

formulated in Section 3.2.

3.1 Achievable Rate and Achievable Secrecy Rate

The achievable rate of active user k ∈ {1, · · · , K} and system sum rate are given by,

respectively,

Rk = log2(1+ Γk) and R=
K
∑

k=1

log2(1+ Γk), (3.1)

where Γk is the received Signal-to-Interference-plus-Noise Ratio (SINR) at active user k

and is given by

Γk =

�

�hH
k wk

�

�

2

∑K
r 6=k

�

�hH
k wr

�

�

2
+
�

�hH
k v
�

�

2
+σ2

n

. (3.2)

In this thesis, we also take into account Quality-of-Service (QoS) for all active users.

Specifically, the SINR of active users K , Γk, is required to be greater than or equal to a

threshold Γreq to ensure a good link quality. As stated before, due to the broadcast nature

of wireless medium, all idle users are able to receive the information stream from the

BS, and they may also decode the transmit signals to the desired active users. Therefore,

in order to guarantee PHY-security, we consider the worst-case scenario for maximizing

the SST of the considered system. Specifically, for the case potential eavesdropper

m ∈ {1, · · · , m} wiretapping active user k ∈ {1, · · · , K}, we suppose that the potential

eavesdropper m can eliminate all Multiuser Interference (MUI) introduced by all active

users except for active user k in advance of decoding the desired information to active
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use k. Thus, under this assumption, the achievable rate between the BS and idle user m

for eavesdropping desired active user k can be written as

RE
m,k = log2(1+ Γ

E
m,k), (3.3)

where Γ E
m,k is the received SINR at idle user m for eavesdropping active user k and is

given by

Γ E
m,k =

�

�lH
mwk

�

�

2

�

�lH
mv
�

�

2
+σ2

n

. (3.4)

Therefore, the achievable secrecy rate between the BS and active user k ∈ {1, · · · , K}
and the system SST are given by [7], [23], [24], respectively,

RSec
k =

�

Rk − max
m∈{1,··· ,M}

RE
m,k

�+

(3.5)

RSec =
K
∑

k=1

�

Rk − max
m∈{1,··· ,M}

RE
m,k

�+

, (3.6)

where RSec
k quantifies the achievable data rate at which BS can reliably transmit secret

information to active user k, meanwhile, the potential eavesdroppers are unable to

decode the received signal.

3.2 Resource Allocation Problem Formulation

In this section, we first design an optimal resource allocation algorithm for maximizing

the SST of a multiuser single-eavesdropper system with perfect CSI at the BS. Hence, we

let M = 1 and omit the index m in the rest of this chapter as well as in next chapter. For the

sake of notational simplicity, we define the following variable, Wk =wkw
H
k , Hk = hkh

H
k ,

k ∈ {1, · · · , K}, and Lm = lmlH
m, m ∈ {1, · · · , M}. Then, we rewrite the received SINR at

active user k in (3.2) and the received SINR at idle user m for eavesdropping active user

k in (3.4) as follows, respectively

Γk =
Tr(HkWk)

∑K
r 6=k Tr(HkWr) + Tr(HkV) +σ2

n

, (3.7)

Γ E
k =

Tr(LWk)
Tr(LV) +σ2

n

. (3.8)
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The optimal resource allocation policy,
�

W∗
k,V∗

	

, for maximizing the system SST can

be obtained by solving

maximize
Wk ,V∈HNT

K
∑

k=1

�

Rk − RE
k

�+

subject to C1:
K
∑

k=1

Tr(Wk) + Tr(V)≤ Pmax,

C2:
Tr(HkWk)

∑K
r 6=k Tr(HkWr) + Tr(HkV) +σ2

n

≥ Γreqk
,∀k,

C3: V� 0, C4: Rank(Wk)≤ 1, ∀k, C5: Wk � 0, ∀k. (3.9)

In constraint C1, we consider the physical limitation of the maximum transmit power at

the BS restricting by Pmax. According to the proposed resource allocation policy, the BS

is able to freely distribute the transmit power on each antenna as long as this constraint

holds. In constraint C2, we set a threshold Γreq which denotes the minimum required

SINR for active users to achieve reliable information decoding. It should be noted that, on

the one hand, a relatively high threshold Γreq may lead to a better QoS for all active users.

On the other hand, increasing this threshold also adversely influences the feasibility of

the considered optimization problem. Hence, an advisable choice of Γreq is at a level

which a good QoS is just met. Constraint C3 and V ∈HNT are imposed since covariance

matrix V has to be a positive semi-definite Hermitian matrix. Constraint C4 and C5

are imposed to guarantee that Wk = wkw
H
k holds and covariance matrix Wk to be a

positive semi-definite Hermitian matrix after optimization, respectively. In addition,

the operator [·]+ in the objective function can be safely removed without affecting the

optimal solution of the considered optimization problem. Specifically, if the achievable

secrecy rate between the BS and active user k ∈ {1, · · · , K}, RSec
k , is nonpositive, it implies

the fact that the BS consumes power to transmit information to desired user k while the

SST of the considered system is reduced, which contradicts to our target of maximizing

the system SST. Yet, we indicate that the above-mentioned issue can be overcome by

applying the proposed resource allocation algorithm in a way that insecure transmission

of active user k is shut down, and the corresponding power is redistributed to other

active users.

It should be noted that the considered resource allocation optimization problem 3.9

is a non-convex optimization problem. Specifically, the non-convexity with respect to

the beamforming vector wk,∀k ∈ {1, · · · , K} and artificial noise covariance matrix V,

is due to the objective function and constraint C4. In next chapter, we propose an

optimal resource allocation algorithm based on monotonic optimization to achieve the

optimal solution of the considered non-convex optimization problem. In addition, we
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also design a less computationally complex suboptimal resource allocation algorithm by

formulating the considered optimization problem into a form of Difference of Convex

Programming (DCP).
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Chapter 4

Solution of the Optimization Problem

In this chapter, we propose an optimal resource allocation algorithm based on MO,

which achieves a globally optimal solution for problem 3.9. Then, considering the

hardware limits of practical systems, we also pose a suboptimal algorithm with low

computational complexity which obtains a locally optimal solution for problem 3.9.

In addition, some mathematical preliminaries are introduced before we present the

algorithms.

4.1 Mathematical Preliminaries

In this section, we introduce some mathematical preliminaries which are related to

the proposed optimal resource allocation algorithm in next section.

Definition 1 (Increasing function): A function f : Rn
+→ R is increasing if f (x)≤ f (y)

when 0≤ x ≤ y .

Definition 2 (Box): Given a vector x ∈ Rn, the hyper rectangle [0,b] = {x | 0� x� b}
is referred to as a box with vertex b.

Definition 3 (Normal set): A set G ∈ Rn
+ is normal if for any point x ∈ G , all other

points x′ such that 0≤ x′ ≤ x are also in set G .

Definition 4 (Conormal set): A set H ∈ Rn
+ is conormal if for any point x ∈ G , all

other points x′ such that x′ ≥ x are also in setH . Besides, if a setH is conormal in a

box [0,b], then the setH is normal.

Proposition 1: The union and the intersection of normal sets are still normal set.

Definition 5 (Polyblock): A set P ∈ Rn
+ is called a polyblock if it is a union of a finite

number of boxes [0,x], where vertex x ∈ T and |T |< +∞.

Proposition 2: Any polyblock is closed and normal. The intersection of finitely many

polyblocks is a polyblock.
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Figure 4.1: Illustration of the mathematical preliminaries which are related to the pro-
posed optimal resource allocation algorithm.

Definition 6 (Proper): An element x ∈ T is said to be proper if there is no element

x′ ∈ T such that x � x′ and x 6= x′. A set T is a proper set if every element x ∈ T is

proper.

Proposition 3: If vector variable x belongs to a polyblock P , and f (x) : Rn
+→ R is an

increasing function of x, then the maximum of f (x) over polyblock P must occur at one

proper vertex of P .

Definition 7 (Projection): Given any vector variable x ∈ Rn
+ and any nonempty normal

set G ∈ Rn
+, πG (x) is a projection of x on G if πG (x) = λx with λ=max {η | ηx ∈ G}.

Definition 8 (Upper boundary): A point y ∈ Rn
+ is an upper boundary point of a

bounded normal set G if x ∈ G whileKy ∈ Rn
+\G withKy =

�

y′ ∈ Rn
+|y
′ � y and y′ 6= y

	

.

In Fig. 4.1, we illustrate the above concepts. Specifically, the blue rectangle in the

left part represents the box [0,v1], and v1 is the respective vertex of the box. The area

below the blue curves represents polyblocks P1 = [0,v1] with proper vertex v1 and

P2 =
�

0,v1
1

�

∪
�

0,v2
1

�

with proper vertex set T = {v1,v2}, respectively. It can be seen

that if a point x is in polyblocks P1 and P2, then any point x′ such that 0 ≤ x′ ≤ x

also belongs to these polyblocks. Hence, polyblocks P1 and P2 are said to be normal.
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Moreover, we indicate the red curve as the upper boundary of a normal set G . Then, the

point πG (v1) is a projection of v1 on set G . We suppose a function f (v) is increasing on

polyblock P2, then f (v)≤max { f (v1), f (v2)} for all v ∈ P2 which means the maximum

of the increasing function f (v) occurs only at the proper vertex of polyblock P2.

4.2 Optimal Resource Allocation Scheme

We notice that the objective function in problem 3.9 is the sum of difference of two

logarithmic functions which are monotonically increasing in their domains. After several

mathematical transformation steps, the objective function can be reformulated into a

canonical form of monotonically increasing function. Moreover, the feasible set of the

optimization problem 3.9 is an intersection of a normal set and a conormal set, where

the normal set is defined by constraint C1, C3, C4, C5 and the conormal set is defined

by constraint C2, C3, C4, C5. Therefore, we can obtain the optimal solution of the

considered optimization problem by adopting monotonic optimization approach.

The issue of transforming the objective function into a form of monotonically increasing

function can be resolved by rewriting the achievable rate between the BS and potential

eavesdropper for eavesdropping desired active user k, i.e., RE
k , into a form of a constant

subtracting a variable. Specifically, we first seek an upper bound of RE
k as follows,

RE,upper
k =max

Wk ,V

�

log2

�

1+
Tr(LWk)

Tr(LV) +σ2
n

�

�

. (4.1)

Since L,V,Wk ∈ HNT are positive semi-definite matrices of the same size, we derive a

sequence of inequalities,

Tr(LWk)
Tr(LV) +σ2

n

(a)
≤

Tr(LWk)
σ2

n

(b)
≤

Tr(L)Tr(Wk)
σ2

n

(c)
≤

PmaxTr(L)
σ2

n

(4.2)

where inequality (a) always holds as both the numerator and denominator are non-

negative. Inequality (b) can be proven by CauchyâĂŞSchwarz inequality. Inequality (c)

always holds since constraint C1 bounds Tr(Wk) ≤ Pmax. Hence, we obtain an upper

bound of RE
k , where

RE,upper
k = log2(1+

PmaxTr(L)
σ2

n

). (4.3)

It can be observed that the upper bound is a constant as long as the channel vector

between the BS and the potential eavesdropper is perfectly known at the BS. As a result,

we omit the active user index k of the upper bound RE,upper
k in the rest part of this chapter,

since perfect CSI is assumed at the BS.
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We note that the constant to rewrite RE
k is possessed now, and then we define a new

slack tk and rewrite RE
k and the objective function in problem 3.9 as follows, respectively

RE
k = RE,upper − tk, (4.4)

K
∑

k=1

(Rk − tk)− KRE,upper , (4.5)

and for the sake of notational simplicity, we define t =
∑K

k=1 tk to collect all tk.

On the other hand, it should be noted that the achievable rate between the BS and

the k-th active user, Rk, is a monotonic increasing function of the received SINR at k-th

active user, Γk. To facilitate monotonic optimization, we introduce a slack z ∈ G , where

G ∈ RK is a normal set, and

G = { z | 1≤ zk ≤ 1+ Γk(W,V), W ∈ P , V ∈Q, ∀k ∈ {1, · · · , K}}

where P is a set defined by C1, C2, C4 and C5, and Q is a set defined by C1, C2 and C3.

Now we can rewrite problem 3.9 as a canonical monotonic optimization problem:

maximize
(z,t)∈D

Φ(z, t) =
K
∑

k=1

log2(zk) + t, (4.6)

where the feasible set D ∈ RK ×R is defined as

D =
�

(z , t) | z ∈ G , 0≤ t≤ KRE,upper
	

(4.7)

We note that the objective function of problem 4.6 is a monotonic increasing function

of (z, t) over the feasible set D, and the optimal solution for problem 4.6, denoted by

(z∗, t∗), must occur at the upper boundary of the feasible set D, where zk = 1+ Γk(Wk,V)
for all k. Conversely, if a solution (W∗,V∗) leads to the optimal solution z∗, where

z∗k = Γk(Wk,V) for all k, then such (W∗,V∗) is the optimal solution for problem 3.9. As

a result, problem 3.9 and 4.6 are equivalent to each other. Besides, it should be noted

that the feasible D is a subspace of RK ×R, where the vector z is in RK , and variable t

belongs to a plane which is orthogonal to RK .

Next, we design an optimal resource allocation algorithm to solve the monotonic

optimization problem 4.6 based on the polyblock outer approximation [15], [19], [25].
Since the upper boundary of the feasible set D is unknown in advance, we approach

the boundary by iteratively pruning a polyblock which always contains the feasible set.

Specifically, we initially construct a polyblock P1 which includes the feasible set D with

only one vertex (s1, t1) in the vertex set T1. It should be noted that s1 consists of all the
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Algorithm 1 Polyblock Outer Approximation Algorithm

1: Set polyblock P1 with vertex set T1 = (s1, t1), where s1 consists of optimum points of
all single-user optimization problem under the same constraints and t1 = KRE

k,upper ; set
convergence tolerance 0≤ ε� 1 and maximum iteration MPOA

2: Initialize CBV0 = 0 and iteration index i = 1.
3: repeat
4: i = i + 1
5: Select (si , t i) = arg max Φ(si , t i)

(si ,t i)∈Ti

6: Compute πD(si , t i), the projection of (si , t i) on the boundary of D based on Algorithm 2
7: if πD(si , t i) = (si , t i) then
8: set (s∗i , t∗i ) = (si , t i) and CBVi = Φ(si , t i), and terminate the algorithm
9: else if πD(si , t i) ∈ D and Φ(πD(si , t i))≥ CBVi−1 then

10: set (s∗i , t∗i ) = πD(si , t i) and CBVi = Φ(πD(si , t i))
11: else
12: Set (s∗i , t∗i ) = (s

∗
i−1, t∗i−1) and CBVi = CBVi−1

13: end if
14: Update vertex set based on Ti+1 = (Ti\T∗)∪

�

(sk
i , et i) | sk

i = si − (sk
i −π

k
D(si , t i))ek

	

, where
et i ∈

�

t i ,bt i

	

, bt i = πK+1
D (si , t i), (si , t i) ∈ T∗, T∗ = {(s, t) ∈ Ti | (s, t)> πD(si , t i)}.

15: until |Φ(si , t i)− CBVi| ≤ ε or i > MOPA.
16: Obtain the optimal solution (s∗i , t∗i ) and optimal value Φ(s∗i , t∗i ).

optimum points 1 and t1 = KRE,upper . Then, in the i-th iteration, we take every vertex

(si, t i) in the vertex set Ti back into the objective function of the monotonic optimization

problem to compute Φ(si, t i). The largest function value Φ(si, t i) in the i-th iteration is

defined as the current best value, i.e., CBVi. Next, we choose the vertex which gives the

largest function value, and then compute its projection on the feasible set D, πD(si, t i)
and the corresponding function value Φ(πD(si, t i)), respectively.

Based on the aforementioned CBVi, Φ(si, t i), πD(si, t i), and Φ(πD(si, t i)), we update

the current best value CBVi and the vertex set Ti. Every vertex (si, t i) in the vertex

set is replaced by K new vertices
�

(s1
i ,et i), · · · , (sk

i ,et i), · · · , (sK
i ,et i)

	

, k ∈ {1, · · · , K}. In

particular, we have sk
i = si−(sk

i −π
k
D(si, t i))ek, where sk

i is the k-th element of si, π
k
D(si, t i)

is the the k-th element of πD(si, t i), and ek is a unit-norm vector whose k-th element

is one. Besides, et i belongs to the set
�

t i,bt i

	

, and bt i can be obtained by bt i = πK+1
D (si, t i),

where πK+1
D (si, t i) is the K + 1-th element of πD(si, t i). The algorithm is terminated if

|Φ(si, t i)− CBVi| ≤ ε or i > MPOA, where 0 ≤ ε � 1 is the optimal solution tolerance

factor which specifies the accuracy of the approximation, and MPOA is the maximum

iterations which guarantee the termination of the algorithm within a finite amount of

time. The proposed POA algorithm is summarized in Algorithm 1. The projection of

the vertex (si, t i), i.e., πD(si, t i), can be obtained by using Algorithm 2 which is based

1The optimum points are obtained by solving the optimization problems for maximizing secrecy rate of
the considered system in presence of single active user and single potential eavesdropper under the
same constraints.
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Algorithm 2 Projection Bisection Search Algorithm

1: Initialize λmin = 0, λmax = 1, iteration index j = 1, and convergence tolerance
0< δ� 1

2: repeat
3: Calculate λ j based on λ j = (λmin +λmax)/2
4: if λ j(si, t i) ∈ D then
5: set λmin = λ j

6: else
7: set λmax = λ j

8: end if
9: j = j + 1

10: until λmax −λmin ≤ δ
11: Calculate projection πD(si, t i) = λmin(si, t i)

on bisection search algorithm. The optimal solution approximation factor 0< δ� 1 in

Algorithm 2 specifies the accuracy of computing projection.

It should be noted that checking λ j(si, t i) ∈ D in Algorithm 2 involving solving a

one-dimensional optimization problem in each iteration j as follows:

max
�

λ j | λ js
k
i ≤ 1+ Γk(W,V), W ∈ P , V ∈Q, ∀k ∈ {1, · · · , K}

	

= max

�

λ j | λ j ≤ min
k∈{1,··· ,K}

fk(W,V)
gk(W,V)sk

i

, W ∈ P , V ∈Q, ∀k ∈ {1, · · · , K}
�

= max
W∈P , V∈Q

min
k∈{1,··· ,K}

fk(W,V)
gk(W,V)sk

i

, (4.8)

where

fk(W,V) =
K
∑

r=1

Tr(HkWr) + Tr(HkV) +σ
2
n, (4.9)

gk(W,V) =
K
∑

r 6=k

Tr(HkWr) + Tr(HkV) +σ
2
n, (4.10)

and 4.8 is a standard linear fractional programming problem. In consequence, it can be

solved by the Dinkelbach algorithm [26] in polynomial time or be reformulated into a

convex problem via applying the Charnes-Cooper transformation [27] and then be solved

by using interior point method. On the other hand, the optimal resource allocation policy
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(W∗
j ,V

∗
j) in each iteration j in Algorithm 2 can be obtained by solving the following

non-convex problem:

(W∗
j ,V

∗
j) = arg max

W,V,µ
µ

subject to C1-C5,C6 : fk(W,V)−λ js
k
i gk(W,V)≥ µ, ∀k. (4.11)

We note that by applying the Semidefinite Programming (SDP) relaxation method which

is proposed in [28]–[30], we can omit the non-convex constraint C4 and transform

the problem 4.11 into a convex SDP which can be efficiently solved by mature convex

program solvers such as CVX [31] and CVXOPT [32]. At the end of this section, we will

give the corresponding proof that solving the relaxed 4.11 yields the optimal rank-one

matrix W∗.

Furthermore, as the optimal solution factors ε and δ tend to 0, we obtain the globally

optimal resource allocation policy of problem 4.6. However, the above-mentioned

algorithms are extremely time-consuming, since the computational complexity of the

proposed algorithm grows exponentially with the number of active users, K , used in each

iteration. In order to achieve a balance between optimality and efficiency, we propose a

suboptimal scheme which requires polynomial time computational complexity in next

section. Notwithstanding, it should be noted that the proposed optimal algorithm is

useful, since it can be regarded as a performance benchmark for any other scheme.

Next, we give the proof that the solving the considered relaxed problem 4.11 always

yields an optimal rank-one matrix W∗
j . We first write the Lagrangian dual function of the

relaxed problem 4.11 as follows:

L = ζ

K
∑

k=1

Tr(Wk)−
K
∑

k=1

Tr(WkYk)−
K
∑

k=1

κk

�

fk(W,V)−λ js
k
i gk(W,V)

�

+
K
∑

k=1

ηk

�

Γreq

K
∑

r=1

Tr(HkWr)− (1+ Γreq)Tr(HkWk)
�

+Ψ, (4.12)

where Ψ denotes the collection of primal and dual variables and constants that are not

related to the proof. Variables ζ, ηk, and κk are the Lagrange multipliers associated with

constraints C1, C2, and C6, respectively. Matrices X ∈ CNT×NT and Yk ∈ CNT×NT are the

Lagrange multipliers associated with the positive semidefinite constraints C3 and C5

with respect to matrices V and Wk, respectively. Therefore, the dual problem for the SDP

relaxed problem is given by

maximize
X,Yk�0,ζ,ηk ,κk

minimize
Wk ,V∈HNT ,µ

L (Wk,V,µ,Yk,X,ζ,ηk,κk). (4.13)
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We note that the relaxed SDP problem in dual problem 4.13 is jointly convex with respect

to the optimization variables and satisfies the Slater’s constraint qualification. Thus,

solving the primal and dual optimal values are attained and equal, and strong duality

holds [33]. Then, noticing the functions in primal optimization problem are differentiable,

we follow a similar approach as proposed in [10], [34], to reveal the structure of the

optimal Wk of dual problem 4.13 by studying the Karush-Kuhn-Tucker (KKT) conditions.

The KKT conditions for the optimal W∗
k are given by:

ζ∗,η∗k,κ∗k ≥ 0,Y∗k � 0, (4.14)

Y∗kW
∗
k = 0, (4.15)

ÏW∗k
L = 0, (4.16)

where ζ∗, η∗k, κ∗k ≥ 0, and Y∗k are the optimal Lagrange multipliers for dual problem 4.13,

and ÏW∗k
L denotes the gradient of Lagrangian function with respect to W∗

k. Moreover,

we express 4.16 as

Y∗k = ζ
∗INT
−Φ, (4.17)

where

Φ=
K
∑

r=1

(1−λ js
k
i )κ

∗
rHr − Γreq

K
∑

r=1

η∗rHr +
�

λ js
k
i κ
∗
k + (1+ Γreq)η

∗
k

�

Hk. (4.18)

Next, we give the explanation why Φ must be positive semidefinite. We first assume Φ

is a negative definite matrix, then from 4.17, Y∗k need to be a full-rank positive definite

matrix. Considering 4.15, W∗
k must be a zero matrix which cannot be the optimal solution.

Hence, we concentrate on the case where Θ is a positive semidefinite matrix in the rest

part of the proof. Due to the fact that matrix Y∗k = ζ
∗INT
−Φ is positive semidefinite, we

have

ζ∗ ≥ νmax
Φ
≥ 0, (4.19)

where νmax
Φ

is the real-valued maximum eigenvalue of matrix Θ. Reviewing the rewritten

KKT condition in 4.17, we note that if ζ∗ > νmax
Φ

, matrix Y∗k is a full-rank positive definite

matrix. Yet, this will lead to that the solution W∗
k becomes a zero matrix which conflicts

with the KKT condition in 4.14 where ζ∗ > 0 and Pmax > 0. Thus, for the optimal solution,

the optimal Lagrange multiplier ζ∗ has to be equal to the maximum eigenvalue of matrix

Φ, i.e., ζ∗ = νmax
Φ

. In addition, we note that there must exist a vector pνmax
Φ

of matrix

Y∗k satisfying Y∗kpνmax
Φ
= 0, where pλmax

Φ
∈ CNT×1 and pλmax

Φ
is the unit-norm eigenvector of
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matrix Φ corresponding to eigenvalue νmax
Φ

. As a result, the optimal beamforming matrix

W∗
k must be a rank-one matrix which can be expressed as

W∗
k = ξpνmax

Φ
pH
νmax
Φ

, (4.20)

where ξ is a parameter which fulfills the maximum transmit power constraint C1 at the

BS.

4.3 Suboptimal Resource Allocation Scheme

In this section, we design a low computationally complex suboptimal resource alloca-

tion algorithm based on successive convex approximation to achieve a locally optimal

solution of problem 3.9. To facilitate the presentation, we first rewrite the objective

function in problem 3.9 as

F(W,V)− G(W,V), (4.21)

where

F(W,V) =
K
∑

k=1

log2(
K
∑

r=1

Tr(HkWr) + Tr(HkV) +σ
2
n) + K log2(Tr(LV) +σ2

n), (4.22)

G(W,V) =
K
∑

k=1

log2(
K
∑

r 6=k

Tr(HkWr) + Tr(HkV) +σ
2
n) +

K
∑

k=1

log2(Tr(LWk) +σ
2
n).(4.23)

For the sake of notational simplification, we collect all Wk in W ∈ CK×NT .

We notice that the rewritten objective function in Eq. (4.21) has a canonical form of

DCP. As discussed in [35]–[37], finding an algorithm that optimally solves a DCP is in

general an open problem. On the other hand, several convex-based approaches have

been proposed to obtain a locally optimal solution in DCP optimization problems [37],
[38]. In this thesis, we design a suboptimal resource allocation algorithm based on SCA

as proposed in [39]. Specifically, since G(W,V) is a differentiable convex function, for

any feasible point W(m) and V(m), the following inequality can be derived,

G(W,V) ≥ G(W(m),V(m)) + Tr(ÏWG(W(m),V(m))H(W−W(m))) (4.24)

+ Tr(ÏVG(W(m),V(m))H(V−V(m))), (4.25)

and we note that the inequality can be proven by applying the first-order conditions of

convex function [33]. Moreover, we define the right hand side of the above inequality

as G(W,V) which is an affine function and represents the global underestimation of
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Algorithm 3 Successive Convex Approximation Algorithm

1: Set initial point W(1),V(1), iteration index m= 1, convergence tolerance 0< εSCA�,
and the maximum number of iterations MSCA

2: repeat
3: Solve problem 4.26 for a given W(m) and V(m), and store the intermediate resource

allocation policy (W,V)
4: Set W(m) =W and V(m) = V
5: Set m= m+ 1
6: until m= MSCA or r(W(m),V(m))−r(W(m−1),V(m−1))

r(W(m−1),V(m−1)) ≤ εSCA

7: Obtain the suboptimal solution W(∗) =W(m), V(∗) = V(m)

G(W,V). To obtain an upper bound of 4.21 with respect to any feasible point W(m) and

V(m), we can solve the following optimization problem:

maximize
Wk ,V∈HNT

r(W,V)
∆
= F(W,V)− G(W,V)

subject to C1 :
K
∑

k=1

Tr(Wk) + Tr(V)≤ Pmax,

C2 :
Tr(HkWk)

∑K
r 6=k Tr(HkWr) + Tr(HkV) +σ2

n

≥ Γreq, ∀k,

C3 : V� 0, C4 : Rank(Wk)≤ 1, ∀k, C5 : Wk � 0, ∀k. (4.26)

In problem 4.26, the only obstacle to implement SCA algorithm is the non-convex rank-

one constraint C4. Following the similar approach as in [40]–[42], we can omit constraint

C4 and transform the problem 4.26 into a convex SDP which can be efficiently solved by

mature convex program solvers such as CVX [31] and CVXOPT [32]. In the end of this

section, we verify the tightness of the adopted semidefinite relaxation. The proposed

SCA algorithm is summarized in Algorithm 3.

It should be noted that the optimal value of problem 4.26 serves as an upper bound of

the original optimization problem 3.9. However, as we iteratively apply SCA algorithm,

the upper bound can gradually be tightened. After reaching the maximum number of

iterations MSCA or the local convergence, the proposed algorithm generate the candidate

solution (W∗,V∗), and the locally optimal value can be obtained by taking the (W∗,V∗)
back into the objective function in problem 3.9. It can be shown that the proposed SCA

algorithm converges to the locally optimal value of problem 3.9 with polynomial time

computational complexity [38], [43], [44].
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Next, we give the proof that the considered relaxation method is tightened when the

maximum transmit power at the BS is greater than 0, i.e., Pmax > 0. We rewrite the

problem 4.26 into the following equivalent form:

maximize
Wk ,V∈HNT ,τ,uk ,x

τ

subject to C1-C3,C5,

C6 : eF(W,V)− G(W,V)≥ τ,

C7 :
K
∑

r=1

Tr(HkWr) + Tr(HkV)≥ uk, ∀k,

C8 : Tr(LV)≥ x , (4.27)

where eF(W,V) is defined as follows

eF(W,V) =
K
∑

k=1

log2(uk +σ
2
n) + K log2(x +σ

2
n) (4.28)

and τ, uk, and x are auxiliary optimization variables.

We note that the relaxed SDP problem in dual problem 4.27 is jointly convex with

respect to the optimization variables and satisfies the Slater’s constraint qualification.

Hence, strong duality holds and solving the dual problem is equivalent to solving the

primal problem [33]. Then, we formulate the dual problem by writing the Lagrangian

function of the primal problem in dual problem 4.27:

L = ζ
K
∑

k=1

Tr(Wk)−
K
∑

k=1

Tr(WkYk)−
K
∑

k=1

αk

K
∑

r=1

Tr(HkWr)

+
K
∑

k=1

ηk

�

Γreq

K
∑

r=1

Tr(HkWr)− (1+ Γreq)Tr(HkWk)
�

+ θTr(ÏWG(W(m),V(m))H(W−W(m))) +Ψ, (4.29)

where Ψ indicates the collection of primal and dual variables and constants that are

not related to the proof. Variables ζ, ηk, θ , αk, and φ are the Lagrange multipliers

associated with constraints C1, C2, C6, C7, and C8, respectively. Matrices X ∈ CNT×NT

and Yk ∈ CNT×NT are the Lagrange multipliers for the positive semidefinite constraints

C3 and C5 on matrices V and Wk, respectively. Therefore, the dual problem for the SDP

relaxed problem is given by

maximize
X,Yk�0,ζ,ηk ,θ ,αk ,φ

minimize
Wk ,V∈HNT ,τ,uk ,x

L (Wk,V,τ,Yk,X,ζ,ηk,θ ,αk,φ). (4.30)
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Then, we reveal the structure of the optimal Wk of dual problem 4.30 by investigating

the KKT conditions. The KKT conditions for the optimal W∗
k are given by:

ζ∗,η∗k,θ ∗,α∗k,φ∗ ≥ 0, Y∗k � 0, (4.31)

Y∗kW
∗
k = 0, (4.32)

ÏW∗k
L = 0, (4.33)

where ζ∗, η∗k, θ ∗, α∗k, φ∗ ≥ 0, and Y∗k are the optimal Lagrange multipliers for the dual

problem in 4.30, and ÏW∗k
L denotes the gradient of Lagrangian function with respect to

W∗
k. Moreover, we rewrite 4.33 as

Y∗k = ζ
∗INT
−Θ, (4.34)

where

Θ = −θ ∗ÏWk
G(W(m),V(m)) +

K
∑

r=1

α∗rHr − Γreq

K
∑

r=1

η∗rHr + (1+ Γreq)η
∗
kHk. (4.35)

It should be noted that ζ∗ > 0 due to the fact that the equality in constraint C1

must hold for the optimal solution. Next, we give the reason that Θ must be positive

semidefinite. We first assume Θ is a negative definite matrix, then according to 4.34, Y∗k
must be a full-rank positive definite matrix. Considering 4.32, W∗

k must be a zero matrix

which cannot be the optimal solution for Pmax > 0. Hence, we only consider the case

where Θ is a positive semidefinite matrix in the following discussion. Because matrix

Y∗k = ζ
∗INT
−Θ is positive semidefinite, we have

ζ∗ ≥ λmax
Θ
≥ 0, (4.36)

where λmax
Θ

is the real-valued maximum eigenvalue of matrix Θ. Recalling the rewritten

KKT condition in 4.34, we note that if ζ∗ > λmax
Θ

, matrix Y∗k is a full-rank positive definite

matrix. Again, this will result in the solution W∗
k to be a zero matrix which contradicts

the KKT condition in 4.31 where ζ∗ > 0 and Pmax > 0. Thus, for the optimal solution, the

optimal Lagrange multiplier ζ∗ has to be equal to the maximum eigenvalue of matrix Θ,

i.e., ζ∗ = λmax
Θ

. In addition, we note that there must exist a vector qλmax
Θ

of matrix Y∗k such

that Y∗kqλmax
Θ
= 0, where qλmax

Θ
∈ CNT×1 and qλmax

Θ
is the unit-norm eigenvector of matrix

Θ corresponding to eigenvalue λmax
Θ

. As a result, the optimal beamforming matrix W∗
k

must be a rank-one matrix which can be expressed as

W∗
k =ωqλmax

Θ
qH
λmax
Θ

(4.37)
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where ω is a parameter which satisfies the maximum transmit power constraint C1 at

the BS.
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Chapter 5

Extension to Robust SST
Optimization

In this chapter, we extend the resource allocation optimization problem 3.9 by involving

multiple potential eavesdroppers in the presence of imperfect CSI.

5.1 CSI Uncertainty Constraint Transformation

As discussed in Section 2.2, we adopt a deterministic model to capture the CSI un-

certainty at all potential eavesdroppers. The optimal resource allocation policy can be

obtained by solving the following optimization problem:

maximize
Wk ,V∈HNT

K
∑

k=1

�

Rk − max
m∈{1,··· ,M}

sup
∆lm∈Ωm

log2

�

1+ Γ E
m,k

�

�

subject to C1:
K
∑

k=1

Tr(Wk) + Tr(V)≤ Pmax, ∀k,

C2:
Tr(HkWk)

∑K
r 6=k Tr(HkWr) + Tr(HkV) +σ2

n

≥ Γreq, ∀k,

C3: V� 0, C4: Rank(Wk)≤ 1, ∀k, C5: Wk � 0, ∀k. (5.1)

We note that the objective function in problem 5.1 is more complicated than the previous

ones, since it contains both supremum over ∆lm ∈ Ωm and maximization over m ∈
{1, · · · , M}. For each potential eavesdropper, due to the CSI uncertainty, the achievable

rate between the BS and idle user m for eavesdropping the k-th active user log2(1+ Γ E
m,k)

now belongs to an infinite set in which each log2(1 + Γ E
m,k) corresponds to a specific

∆lm. To ensure the optimal resource allocation policy is valid for all ∆lm in the CSI

uncertainty set Ωm, we suppose that the unknown channel uncertainty of idle user m,

∆lm, is the most favorable one for potential eavesdropper m to wiretap the active users.
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As a result, the least upper bound of the achievable rate between the BS and idle user

m for eavesdropping desired active user k, i.e., the supremum of log2(1 + Γ E
m,k) over

∆lm ∈ Ωm, is considered here. Then, we calculate the achievable secrecy rate between

the BS and k-th active user, RE
m,k, according to 3.5.

In order to obtain the globally optimal solution of problem 5.1, the similar monotonic

optimization approach which is proposed in Section 4.2 is applied here. To facilitate

monotonic optimization method, we move maximization over m ∈ {1, · · · , M} and supre-

mum over ∆lm ∈ Ωm inside log2(·) function, since log2(·) is a monotonically increasing

function. As a result, our objective function is given by

maximize
Wk ,V∈HNT

K
∑

k=1

�

Rk − log2

�

1+ max
m∈{1,··· ,M}

sup
∆lm∈Ωm

Γ E
m,k

�

�

. (5.2)

However, to optimally solve the objective function, we have to spend much computational

power to constantly search for the supremum in each iteration with respect to each

∆lm ∈ Ωm. In order to tackle the aforesaid issue, we apply the following steps to simplify

the objective function. Specifically, we define a slack γk ∈ R, where

γk ≥ max
m∈{1,··· ,M}

sup
∆lm∈Ωm

Γm,k = max
m∈{1,··· ,M}

sup
∆lm∈Ωm

Tr(lmlH
mWk)

Tr(lmlH
mV) +σ2

n

. (5.3)

We note that the slack γm omits the supremum in the objective function by introducing

a new constraint in 5.3. This constraint does not change the optimal solution of the

optimization problem, since the maximum of the considered objective function still occurs

at the places where equality holds in the new constraint. The considered optimization

problem 5.1 is rewritten as follows:

maximize
V,Wk∈HNT ,γk∈R

K
∑

k=1

[Rk − log2(1+ γk)]

subject to C1-C5,

C6: γk ≥ max
m∈{1,··· ,M}

sup
∆lm∈Ωm

Tr(lmlH
mWk)

Tr(lmlH
mV) +σ2

n

, ∀k, (5.4)

where constraint C6 is the new constraint introduced by slack γk. We notice that

it contains both maximization and semi-infinite constraint which are intractable for

resource allocation algorithm design. To facilitate the solution, we first deal with the

maximization. Specifically, we split each constraint with respect to k further into M

constraints. In other words, the left hand part γk is required to be greater or equal than

all of the M constraints rather than the maximal one. Hence, the maximization over

m ∈ {1, · · · , M} can be omitted.
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Next, we handle the semi-infinite constraint of C6. In particular, instead of finding the

supremum of the received SINR at potential eavesdropper m for eavesdropping active

user k over uncertainty set Ωm,

sup
∆lm∈Ωm

Tr(lmlH
mWk)

Tr(lmlH
mV) +σ2

n

, ∀k, (5.5)

we substitute lm = blm +∆lm into Γ E
m,k and find an upper bound of Γ E

m,k by deriving a

sequence of inequalities:

Γ E
m,k =

Tr
�

(blm +∆lm)(blm +∆lm)HWk

�

Tr
�

(blm +∆lm)(blm +∆lm)HV
�

+σ2
n

(a)
≤

Tr
�

(blm +∆lm)(blm +∆lm)HWk

�

σ2
n

(b)
≤

�

�

�

blm +∆lm

�

�

�

2
Tr(Wk)

σ2
n

(c)
≤

PDL
max

�
�

�

�

blm

�

�

�

2
+ |∆lm|

2
�

σ2
n

(d)
≤

PDL
max

�
�

�

�

blmax

�

�

�

2
+ ε2

max

�

σ2
n

. (5.6)

Specifically, inequality (a) always holds as both the numerator and denominator are

non-negative. Inequality (b) and inequality (c) can be proven by CauchyâĂŞSchwarz

inequality. In inequality (d), we representblmax as the channel vectorblm with the greatest

absolute value and ε2
max as the maximal of ε2

m, ∀m ∈ {1, · · · , M}, respectively. Therefore,

an upper bound of Γ E
m,k is obtained, where

Γ E,upper =
PDL

max

�
�

�

�

blmax

�

�

�

2
+ ε2

max

�

σ2
n

. (5.7)

We note that the upper bound Γ E,upper is the maximum of Γ E
m,k under all constraints in

the considered optimization problem, and it is independent of index k and m. Then, we

define a new slack tk which is given by

tk = log2(1+ Γ
E,upper)− log2(1+ γk), ∀k ∈ {1, · · · , K} . (5.8)

It should be indicated that we omit the variable γk by replacing it with 2(R
E,upper−tk) − 1,

where where RE,upper = log2(1+ Γ E,upper). Then, we substitute γk = 2(R
E,upper−tk) − 1 into

constraint C6, where

C6: 2(R
E,upper−tk) − 1≥ sup

∆lm∈Ωm

Tr(lmlH
mWk)

Tr(lmlH
mV) +σ2

n

, ∀k, ∀m. (5.9)

Furthermore, we transform the semi-infinite constraint resulting from the CSI uncertainty

set into Linear Matrix Inequalities (LMIs) using the following lemma.
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Lemma (S-Procedure): let a function fm(x), m ∈ {1, 2}, x ∈ CN×1, be defined as

fm(x) = xHAmx+ 2Re
�

bH
mx
	

+ cm (5.10)

where Am ∈H, bm ∈ CN×1, and cm ∈ R1×1. Then, the implication f1(x)≤ 0⇒ f2(x)≤ 0

holds if and only if there exists a δ ≥ 0 such that

δ

�

A1 b1

bH
1 c1

�

−

�

A2 b2

bH
2 c2

�

� 0 (5.11)

provided that there exists a point bx such that fk(bx)< 0.

As a result, we can apply Lemma to constraint C6. In particular, we substitute lm =
blm +∆lm in constraint C6. Therefore, the implication

∆lH
m∆lm ≤ ε2

m (5.12)

⇒ 0 ≥ ∆lH
m

�

Wk

2(RE,upper−tk) − 1
−V

�

∆lm (5.13)

+ 2Re
§

blH
m

�

Wk

2(RE,upper−tk) − 1
−V

�

∆lm

ª

(5.14)

+ blH
m

�

Wk

2(RE,upper−tk) − 1
−V

�

blm −σ2
n, ∀m, ∀k (5.15)

holds if and only if there exist δm,k ≥ 0, m ∈ {1, · · · , M}, k ∈ {1, · · · , K}, and such that

the following LMIs constraints hold:

fC6: SC6m,k
(Wk,V,δm,k, tk)

=

�

δm,kINT
+V Vblm

blH
mV −δm,kε

2
m +σ

2
n +bl

H
mVblm

�

−
1

2(RE,upper−tk) − 1
UH

lm
WkUlm � 0, ∀m,∀k,(5.16)

where Ulm =
�

INT
blm

�

. We note that now constraint C6 involve only a finite number of

constraint which facilitate the resource allocation algorithm design.

5.2 Robust SST Optimization Problem Reformulation

Next, following the similar line of thought in Section 4.2, we rewrite the objective

function into a canonical form of monotonically increasing function. Specifically, we

define a new slack z whose elements meet the following inequalities

1≤ zk ≤ 1+ Γk, ∀k ∈ {1, · · · , K} , (5.17)
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and z ∈ G , where G ∈ RK is an intersection of a normal set and a conormal set, which is

given by

G = { z | 1≤ zk ≤ 1+ Γk(Wk,V), W ∈ P , V ∈Q, ∀k} , (5.18)

where P is a set defined by C1, C2, C4, C5, fC6 and Q is a set defined by C1, C2, C3,

and fC6. Moreover, in order to simplify notation, we define t collects all the tk which is

given by

t =
K
∑

k=1

tk = K log2(1+ Γ
E,upper)−

K
∑

k=1

log2(1+ γk), (5.19)

where t ∈ D, D ∈ R is a subset of real number set, and

D =
�

t | 0≤ t ≤ K log2(1+ Γ
E,upper), ∀k

	

. (5.20)

Then, we substitute K log2(1+Γ E,upper)− t for
∑K

k=1 log2(1+γk) in the objective function

of the considered optimization problem. In particular, we note the term K log2(1+Γ E,upper)
can be omitted in the objective function, since it is a constant, and it has no influence on

finding the optimal solution of the considered resource allocation optimization problem.

For facilitating the presentation, we further rewrite the problem 5.4 into the following

monotonic optimization problem:

maximize
z,t

Φ(z, t) =
K
∑

k=1

log2(zk) + t

subject to (z, t) ∈ S , (5.21)

where the feasible set S ∈ RK ×R is defined as

S = { (z, t) | z ∈ G , t ∈ D} . (5.22)

We note that the problem 5.21 has the similar structure as problem 4.26 in Section 4.2.

Hence, we can optimally solve the problem 5.21 by applying Algorithm 1 and Algorithm

2. Considering the optimal resource allocation policy can be obtained by solving the

similar relaxed SDP problem, we omit the problem formulation and the corresponding

proof here.
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Chapter 6

Simulation Results

In this chapter, we evaluate the system performance of the proposed resource alloca-

tion schemes via simulations. In particular, we first study the system performance of the

proposed optimal scheme and suboptimal scheme with respect to a single eavesdropper

in presence of perfect CSI at the BS. Then, we move towards the case involving multiple

potential eavesdroppers with imperfect CSI. Moreover, we compare the system perfor-

mance of the proposed optimal scheme with or without AN to reveal the extra gain by

applying AN. Besides, we also investigate the influence of the optimal solution tolerance

factor ε and the optimal solution approximation factor δ on the system performance

of the proposed optimal resource allocation algorithm. The adopted simulation param-

eters are listed in Table 6.1, unless it is expressly specified. The simulation model is

a single cell where the BS is equipped with NT antennas and located at the center of

the cell. The K active users and M potential eavesdroppers randomly appear within

the whole area of the cell, and all of them follow a uniform distribution between the

reference distance (30 meters) and the maximum service distance of 600 meters. The

multipath fading channels between the BS and all users in the considered system follow

an independent and identical Rayleigh distribution. The minimum required SINR of all

active users, Γreq, is set to be 10 dB unless otherwise noted. In order to facilitate the

presentation in sequel, we define the normalized maximum channel estimation error of

idle receiver ρ2
est = ε

2
m/‖lm‖

2 ,∀k ∈ {1, · · · , K}, which indicates the CSI uncertainty at the

potential eavesdroppers. All the simulation results shown in this chapter are averaged

over different channel realizations of path loss, shadowing and multipath fading.

To show the average SST improvement of the proposed schemes, we also consider

two baseline schemes for comparison. For baseline scheme 1, we adopt Zero-Forcing

Beamforming (ZF-BF) scheme where each beamforming vector wk for active user k nulls

the channel vectors for all the other active users by fixing the beamforming direction, i.e.,

hH
i wk = 0, for all i 6= k. In consequence, we jointly manipulate the covariance matrix

of AN V and the power allocation for each element wk,n in beamforming vector wk,
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Table 6.1: System Parameters in Simulations
Carrier center frequency 1.9 GHz
Frequency bandwidth 5 MHz
Path loss exponent 3.6
Reference distance 30 meters
Active user noise power −110 dBm
Potential eavesdropper noise power −110 dBm
Base station antenna gain 10 dBi
Convergence tolerance factors ε, δ, εSCA 0.001
Maximum number of iterations MSCA and MOPA 100

where wk,n is the n-th element in wk, n ∈ {1, · · · , NT}. For baseline scheme 2, we employ

Maximum Ratio Transmission (MRT) scheme such that the beamforming vector removes

the channel inversion and maximizes the signal-to-noise ratio, i.e., wk =
p

pk
hk
‖hk‖

, where

pk is the gain for channel between the BS and the k-th active user. Thence, we jointly

optimize the covariance matrix of AN V and the gain for k-th channel pk.

6.1 Sum Secrecy Throughput versus Maximum Transmit

Power

In Fig. 6.1, we investigate the average sum secrecy throughput versus the maximum

transmit power at the BS, Pmax, for K = 3 active users, M = 1 potential eavesdropper

and perfect CSI at the BS. Specifically, it can be seen that the average SSTs of the

proposed schemes boost with the maximum BS transmitting power Pmax while the slopes

of these curves gradually decrease due to the fact that the achievable rate is logarithmic

proportional to the transmitting power. Meanwhile, as we increase the number of

antennas at the BS, the average SSTs of the proposed schemes improve. This can be

explained by that the extra DoFs provided by additional antennas facilitate more accurate

and efficient beamforming. The proposed optimal scheme with AN achieves the best

system performance among all the proposed schemes. The reason behind is twofold.

First, compared to the propose optimal scheme without AN, the optimal scheme with AN

allows us to effectively degrade the potential eavesdroppers’ channels. Second, compared

to the propose suboptimal scheme, the globally optimal solution can be obtained by

applying MO method. Besides, it can be observed that the proposed suboptimal scheme

also significantly outperforms the two baseline schemes, since the locally optimal solution

can be acquired via applying SCA algorithm.

On the contrary, two baseline schemes achieve substantially lower average SSTs

compared to the proposed schemes. This is due to the fact that both of them sacrifice much
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Figure 6.1: Average sum secrecy throughput (bit/s/Hz) versus the maximum transmit
power at the base station (dBm), Pmax, for different resource allocation
schemes with 3 active users, 1 potential eavesdropper and perfect channel
state information at the base station. The double-headed arrow indicate the
average sum secrecy rate improvement of the proposed schemes compared
to the baseline schemes.

DoFs for a simple implementation. In particular, the direction of beamforming vector

is fixed for baseline 1 while the only term which can be optimized in the beamforming

vector is the channel gain
p

pk for baseline scheme 2. Additionally, baseline scheme 1

achieves a better system performance compared to baseline scheme 2, since ZF-BF has

the ability to remove the MUI introduced by the active users in the considered system.

6.2 Sum Secrecy Throughput versus Number of Active

Users

Fig. 6.2 illustrates the average sum secrecy throughput versus the number of active

users, K, for the maximum transmit power of Pmax = 40 dBm, number of antennas

NT = 10, M = 1 potential eavesdropper and perfect CSI at the BS. As expected, along
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Figure 6.2: Average sum secrecy throughput (bit/s/Hz) versus the number of active users,
K, for different resource allocation schemes with Pmax = 40 dBm, NT = 10,
1 potential eavesdropper and perfect channel state information at the base
station. The double-headed arrow indicate the average sum secrecy rate
improvement of the proposed schemes compared to the baseline schemes.

with the number of active users grows, the average SSTs of all the proposed schemes

monotonically increases due to the exploit of multiuser diversity. Meantime, it can be

observed that the proposed optimal scheme with AN surpasses all the other proposed

schemes while the optimal scheme without AN is only a slightly worse than the former,

since they both attain the globally optimal solution for the considered optimization

problem. Moreover, the gap between the optimal schemes and the suboptimal scheme

expands in pace with K . This can be explained as follow: with the number of the active

users grows, the dimension of the feasible set increases, and then there may be more

locally optimal solutions within the feasible set. As a result, the suboptimal scheme

may stick to one of the local optimums which is much worse than the global optimum

whereas the proposed optimal schemes always focus on finding the globally optimal

solution. In other words, the expanding gap represents the cost of proposed suboptimal

scheme for striking the trade-off between optimality and computational complexity.
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On the other hand, all the proposed schemes remarkably outmatch the two baseline

schemes. The reason is that both of the baseline schemes compromise with balance

between simplicity and optimality while all the proposed schemes fully utilize the spatial

DoFs in resource allocation by optimizing the beamforming vectors which leads to a

higher multiuser diversity. However, it can be seen that the average SST of baseline

scheme 1 continuously achieves a slight increase whilst the curve of baseline scheme 2

is almost straight. This is due to the fact that, as the number of active users rises, MUI

becomes dominated in the considered system. As a result, ZF-BF scheme has the ability

to suppress MUI while MRT scheme is not able to handle the aforesaid issue.

6.3 Sum Secrecy Throughput versus Number of

Potential Eavesdroppers

In Fig. 6.3, we study the average sum secrecy throughput versus the number of

idle users, i.e., potential eavesdroppers, for the maximum transmit power at the BS,

Pmax = 40 dBm, the number of antennas NT = 10, K = 4 active users and imperfect CSI

of the potential eavesdroppers at the BS. It is expected that, as the number of idle users

increases, the average SSTs of all the proposed schemes decrease. The reason behind

this is twofold. First, with the increase of M , for each potential eavesdropper, a channel

vector lm which is more conducive for eavesdropping active users emerges with a higher

probability. In other words, the quality of the channel between the BS and the potential

eavesdropper m becomes better, which results in a higher achievable rate between the

BS and potential eavesdropper for overhearing the desired active user. Second, as the

number of potential eavesdroppers rises, more DoFs are used to impair the potential

eavesdroppers to wiretap the active users, which leads to a decline in the achievable rate

between the BS and active users.

On the other hand, as stated at the beginning of this chapter, we define the normalized

maximum channel estimation error of idle user, ρest, to indicate the CSI uncertainty at

the potential eavesdroppers. It can be observed that the average SSTs of the proposed

schemes with ρest = 20% dramatically decrease compared to those schemes with ρest =
5%. Meantime, the three proposed schemes with ρest = 5% slowly fall with the growth of

M while those with ρest = 20% decline much faster. This is because the CSI uncertainty

is much greater for ρest = 20%, wherefore to find the optimal resource allocation policy

that is valid for the CSI uncertainty set, more DoFs are sacrificed to compromise with

uncertainty. Besides, as can be observed, for ρest = 20%, the proposed scheme with AN

has better robustness to CSI uncertainty compared to those without AN. This is due to

the fact that AN offers additional DoFs to demote the channels between the BS and the
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Figure 6.3: Average sum secrecy throughput (bit/s/Hz) versus the number of idle users,
M , for different resource allocation schemes with Pmax = 40 dBm, NT = 10,
4 active user and imperfect CSI of the potential eavesdropper. The double-
headed arrow indicate the average sum secrecy throughput improvement of
the proposed schemes compared to the baseline schemes.

potential eavesdroppers. Furthermore, we notice that the optimal solution approximation

factor δ also affects the system performance, since it is used to determine whether or not

the Algorithm 2 is terminated. Specifically, a larger δ lowers the accuracy of computing

the projection, wherefore more error is accumulated in each iteration of algorithm. As a

result, the proposed schemes with a smaller δ achieve better average SSTs. In addition,

the lower computational complexity of the baseline schemes comes at the expense of

a substantially lower average SSTs compared to the other schemes. Yet, the curves of

these baseline schemes gently decay due to the almost perfect CSI, i.e., ρest = 5%.
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Figure 6.4: Average sum secrecy throughput (bit/s/Hz) versus Minimum required SINR
of active users, for different resource allocation schemes with Pmax = 40
dBm, NT = 10, 4 active user and imperfect channel state information of the
potential eavesdropper. The double-headed arrow indicate the average sum
secrecy rate improvement of the proposed schemes compared to the baseline
schemes.

6.4 Sum Secrecy Throughput versus Minimum Required

SINR

Fig. 6.4 depicts the average sum secrecy throughput versus the minimum required

SINR of active user, for the maximum transmit power of Pmax = 40 dBm, the number

of antennas NT = 10, K = 4 active users, M = 2 idle users and imperfect CSI of the

potential eavesdroppers. It can be observed that the average SSTs of the proposed

schemes firstly remain unchanged (ranges from 5 dB to 15 dB) and then decrease

(ranges from 15 dB to 30 dB) with Γreq. To explain this, we recall the discussion in

Chapter 4 that, depending on its value, the threshold Γreq has a different impact on

the feasibility of the optimization problem. Specifically, a relatively low Γreq can be

regarded as a loose constraint, wherefore it hardly reduces the feasible set, and the

optimal solution maintains feasible. However, an excessively high Γreq (higher than
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25 dB in our simulation scheme) forces the BS to unevenly allocate the its power, i.e.,

distributing the transmitting power on one beamforming vector while suppress all the

other beamforming vectors and AN, which is self-contradictory when we consider all the

active users. As a result, the resource allocation problem is optimized in a drastically

squeezed feasible set or even become infeasible.

On the other hand, we can see that the optimal solution tolerance factor ε does not

have a large impact on the average SST of the system, since one percent accuracy is

enough to guarantee the optimum of the considered optimization problem. Moreover,

the optimal scheme with AN and ρest = 20% achieves a low SST compared to the other

proposed schemes. The reason behind this is double. First, due to the imperfect CSI of

the potential eavesdropper, the considered problem is optimized over the CSI uncertainty

set Ωm such that all possible CSI uncertainties of potential eavesdropper m achieve the

optimal solution. A larger ρest, i.e., a set Ωm containing more possible CSI uncertainties

of potential eavesdropper m, hinders the BS from applying more precise beamforming.

Second, the CSI uncertainty compacts the feasible set of the optimization problem since

some feasible resource allocation policies in perfect CSI case now are infeasible. Besides,

it can be observed that all the proposed schemes gain minimum required SINR margin

promotion compared to the baseline schemes. Specifically, the proposed schemes are

able to fully exploit the DoFs of the considered system by optimizing the beamforming

which results in a wider and more flexible range on SINR of the active users and improve

the system performance even if a relatively high Γreq is required.
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Chapter 7

Conclusion

In this thesis, we investigated the resource allocation algorithm design for a secure

multiuser wireless communication system. An MO problem was formulated to maximize

the SST of the considered system in the presence of a single potential eavesdropper with

perfect CSI at the BS. The optimal solution is obtained by applying the POA algorithm and

the projection bisection search algorithm. Considering the fact that the computational

complexity of the proposed optimal scheme is extremely high, a suboptimal resource

allocation algorithm based on SCA is proposed to strike a balance between optimality and

efficiency. Furthermore, we extend the optimization problem to a case where the system

contains multiple potential eavesdroppers in the presence of imperfect CSI. Due to the

intractability of the resulting resource allocation optimization problem, we reformulate

it by replacing the semi-infinite constraint with finite LMIs constraints. Then, we adopt

the similar MO method mentioned before to achieve the optimal resource allocation

policy in the extensional case.

Simulation results revealed the excellent performance of all the proposed resource

allocation schemes compared to the baseline schemes. Moreover, AN was proven to be a

promising technique to facilitate secure transmission. In the case of multiple potential

eavesdroppers with imperfect CSI at the BS, the system performance of all the proposed

schemes declines compared to those in the case of a single potential eavesdropper with

perfect CSI at the BS. The optimal solution approximation factor σ has a large impact

on the system performance while the optimal solution tolerance factor ε slightly affects

the average SST of the considered system.

Through the resource allocation optimization problem for maximization of system SST,

we notice that obtaining the optimal solution to the considered problem is a tough task.

This can be explained by "degrees of freedom mismatch". Specifically, convex optimization

problems can be regarded as a special case of monotonic optimization problems, since

almost all convex optimization problems can be reformulated to monotonic optimization

problems and then optimally solved [25]. Moreover, solving a problem with non-convex
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objective function and constraints, in general, requires more DoFs than that with convex

objective function and constraints, because non-convexity means less structured and

contains more freedom. It should be noted that, in the extensional case, the considered

optimization problem becomes more uncertain and complex due to the fact that the

multiple potential eavesdroppers and the imperfect CSI at the BS introduce more freedom.

As a result, more DoFs are needed to rectify the mismatch between freedom and DoFs to

obtain the optimal solution of the considered optimization problem. For ZF-BF scheme

and MRT scheme, much DoFs are already eliminated by fixing the partial solution of the

considered optimization problem, wherefore DoFs mismatch occurs which results in an

unsatisfactory solution. Overall, MO method is a more powerful and flexible tool than

the conventional convex optimization method when we face complicated problems in

the future.
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